若a、b、c均為實數(shù),且a=x2-2y+π2,b=y(tǒng)2-2z+π3,c=z2-2x+π6,求證:a、b、c中至少有一個大于0.

答案:
解析:

  證明:假設(shè)a、b、c都不大于0,即a≤0,b≤0,c≤0,則a+b+c≤0.而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2π-3,

  ∵π-3>0,且(x-1)2+(y-1)2+(z-1)2≥0,

  ∴a+b+c>0.這與a+b+c≤0矛盾,因此,a、b、c中至少有一個大于0.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c均為實數(shù),求證:a2+b2+c2
1
3
(a+b+c)2

(2)若a,b,c均為實數(shù),且a=x2-2y+
1
3
,b=y2-2z+3,c=z2-2x+
1
6
.求證:a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:a5+b5≥a2b3+a3b2,(a,b∈R+);
(2)用反證法證明:若a,b,c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
c=z2-2x+
π
6
,求證a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a、b、c均為實數(shù)且a=x2-2y+1,b=y2-2z+2,c=z2-2x+2.求證:a、b、c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明.若a、b、c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a、b、c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省宿州市度高二下學(xué)期第一次階段理科數(shù)學(xué)試卷(解析版) 題型:解答題

若a、b、c均為實數(shù)且.求證:a、b、c中至少有一個大于0.

 

查看答案和解析>>

同步練習(xí)冊答案