如圖,四棱錐中,,,分別為的中點(diǎn).

(Ⅰ)求證:;

(Ⅱ)求證:.

 

【答案】

見解析

【解析】(I)取的中點(diǎn),連接

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image004.png">為的中點(diǎn),所以,

,

所以

因此四邊形是平行四邊形.

所以

平面,平面,

因此平面.

另解:連結(jié).

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image019.png">為的中點(diǎn),所以

所以

,所以四邊形為平行四邊形,因此.

平面,所以平面.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image029.png">分別為的中點(diǎn),所以

平面,所以平面.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image034.png">,所以平面平面.

(II)證明 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image029.png">分別為的中點(diǎn),

所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081413211171557622/SYS201308141322065303343956_DA.files/image037.png">,所以

同理可證.

,平面,平面

因此平面.

分別為的中點(diǎn),所以.

,所以

因此平面,

平面,所以平面平面.

【考點(diǎn)定位】本題考查空間直線與平面,平面與平面間的位置關(guān)系,考查推理論證能力和空間想象能力.要證平面,可證明平面所在的某個(gè)平面平行,不難發(fā)現(xiàn)平面平面.證明平面平面時(shí),可選擇一個(gè)平面內(nèi)的一條直線()與另一個(gè)平面垂直.線面關(guān)系與面面關(guān)系的判斷離不開判定定理和性質(zhì)定理,而形成結(jié)論的“證據(jù)鏈”依然是通過挖掘題目已知條件來(lái)實(shí)現(xiàn)的,如圖形固有的位置關(guān)系,中點(diǎn)形成的三角形的中位線等,都為論證提供了豐富的素材.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
,AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)如圖,四棱錐中S-ABCD中,底面ABCD是棱形,其對(duì)角線的交點(diǎn)為O,且SA=AC,SA⊥BD,
(Ⅰ)求證:SO⊥平面ABCD;
(Ⅱ)設(shè)∠BAD=60°,AB=SO=2,P是側(cè)棱上的一點(diǎn),且SD⊥平面APC,求直線SB與平面APC所成的角的正弦值.
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)M,使SM∥平面APC?若存在,求出BM的長(zhǎng),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆河北省邯鄲一中高三高考?jí)狠S模擬考試文數(shù) 題型:解答題

(本小題12分)如圖,四棱錐中,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面的菱形,的中點(diǎn).
(1)求與底面所成角的大。
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高三上學(xué)期第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四棱錐中,側(cè)面是等邊三角形,在底面等腰梯形中,,,的中點(diǎn),的中點(diǎn),.

(1)求證:平面平面;

(2)求證:平面.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)如圖,四棱錐中,平面,四邊形是矩形,,分別是的中點(diǎn).若,

(1)求證:平面;

(2)求直線平面所成角的正弦值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案