12.已知函數(shù)f(x)=ax2+bx+c(a>b>c),且f(1)=0,若函數(shù)f(x)的導(dǎo)函數(shù)圖象與函數(shù)f(x)的圖象交于A,B兩點,C,D是點A,B在x軸上的投影,則線段|CD|長的取值范圍為($\sqrt{5}$,+∞).

分析 根據(jù)f(1)=0和f(x)=f′(x)有兩解求出$\frac{c}{a}$的范圍,利用根與系數(shù)的關(guān)系計算|x1-x2|2,從而得出答案.

解答 解:∵f(1)=a+b+c=0,∴b=-a-c,
∵a>b>c,∴a>0,c<0,∴$\frac{c}{a}<$0,
f′(x)=2ax+b,
令ax2+bx+c=2ax+b得ax2+(b-2a)x+c-b=0,即ax2-(3a+c)x+2c+a=0,
∵函數(shù)f(x)的導(dǎo)函數(shù)圖象與函數(shù)f(x)的圖象交于A,B兩點,
∴方程ax2-(3a+c)x+2c+a=0有兩解,
∴△=(3a+c)2-4a(2c+a)=5a2-2ac+c2>0,
∴($\frac{c}{a}$)2-$\frac{2c}{a}$+5>0,$\frac{c}{a}$∈R,
∴x1+x2=$\frac{3a+c}{a}$=3+$\frac{c}{a}$,x1x2=$\frac{2c+a}{a}$=1+$\frac{2c}{a}$,
∴|x1-x2|2=(x1+x22-4x1x2=(3+$\frac{c}{a}$)2-4(1+$\frac{2c}{a}$)=($\frac{c}{a}$)2-$\frac{2c}{a}$+5=($\frac{c}{a}$-1)2+4,
∵$\frac{c}{a}$<0,
∴($\frac{c}{a}$-1)2+4>5,
∴|x1-x2|>$\sqrt{5}$.
故答案為($\sqrt{5}$,+∞).

點評 本題考查了二次函數(shù)的性質(zhì),函數(shù)最值的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.平面內(nèi)三點A,B,C滿足|$\overrightarrow{BA}$|=3,|$\overrightarrow{BC}$|=4,$\overrightarrow{BA}$$•\overrightarrow{BC}$=0,M,N為平面內(nèi)的動點,且$\overrightarrow{AM}$為單位向量,若$\overrightarrow{MC}$=2$\overrightarrow{MN}$,則|$\overrightarrow{BN}$|的最大值與最小值的和為( 。
A.10B.8C.7D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在△ABC中,B=$\frac{π}{4}$,點D在邊AB上,BD=2,且DA=DC,AC=2$\sqrt{2}$,則∠DCA=$\frac{π}{12}$或$\frac{5π}{12}$或$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合A={x|y=ln(1-x)},B={x|x2-2x-3≤0},全集U=A∪B,則∁U(A∩B)=( 。
A.{x|x<-1或x≥1}B.{x|1≤x≤3或x<-1}C.{x|x≤-1或x>1}D.{x|1<x≤3或x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知邊長為2的正三角形ABC,P,M滿足|AP|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則$\overrightarrow{BM}$2的最小值是( 。
A.$\frac{9-2\sqrt{3}}{4}$B.$\frac{11-3\sqrt{3}}{4}$C.$\frac{13-4\sqrt{3}}{4}$D.$\frac{15-5\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正數(shù)a,b滿足3+log2a=1+log4b=log8(a+b),則a=$\frac{1}{16}$,b=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的幾何體是由棱臺ABC-A1B1C1和棱錐D-AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.(${V_{棱臺}}=\frac{1}{3}h({{S_上}+{S_下}+\sqrt{{S_上}{S_下}}})$)
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在實數(shù)b,使得函數(shù)g(x)=f(x)-b有兩個不同的零點,則a的取值范圍是2<a<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2lnx+x2-2ax(a>0).
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1<x2),且f(x1)-f(x2)≥$\frac{3}{2}$-2ln2恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案