分析 由g(x)=f(x)-b有兩個零點可得f(x)=b有兩個零點,即y=f(x)與y=b的圖象有兩個交點,則函數(shù)在定義域內(nèi)不能是單調(diào)函數(shù),結(jié)合函數(shù)圖象可求a的范圍.
解答 解:∵g(x)=f(x)-b有兩個零點,
∴f(x)=b有兩個零點,即y=f(x)與y=b的圖象有兩個交點,
由于y=x2在[0,a)遞增,y=2x在[a,+∞)遞增,
要使函數(shù)f(x)在[0,+∞)不單調(diào),
即有a2>2a,由g(a)=a2-2a,g(2)=g(4)=0,
可得2<a<4.
故答案為:2<a<4.
點評 本題考查函數(shù)的零點問題,滲透了轉(zhuǎn)化思想,數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {d|d≥$\frac{1}{672}$} | B. | {d|0<d<$\frac{1}{672}$} | C. | {$\frac{1}{672}$} | D. | {d|d≥$\frac{3}{2017}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{3}{2},\frac{5}{3}})$ | B. | $({\frac{5}{3},2})$ | C. | (2,3) | D. | $({\frac{3}{2},3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,ln2) | C. | (0,2) | D. | (0,ln2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com