已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)滿足f′(-1)=0.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間(-3,3)上的單調(diào)性.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)解析式的求解及常用方法
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)函數(shù)的奇偶性和導(dǎo)數(shù)公式,求出b,c的值,即可求f(x)的解析式;
(2)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和單調(diào)性之間的關(guān)系,即可得到(x)在區(qū)間(-3,3)上的單調(diào)性.
解答: 解:(1)∵f(x)=-2x3+bx2+cx,
∴f'(x)=-6x2+2bx+c.
F(x)=f(x)-3x2是奇函數(shù),得b=3,
f'(-1)=-6-2b+c=0,得c=12,
∴f(x)-2x3+3x2+12.
(2)令f'(x)=-6x2+6x+12=0得x=2或-1
x (-3,-1) -1 (-1,2) 2 (2,3)
f′(x) - 0 + 0 -
∴單調(diào)遞增區(qū)間為(-1,2),單調(diào)遞減區(qū)間為(-3,-1),(2,3).
點(diǎn)評:本題主要考查函數(shù)解析式和函數(shù)單調(diào)性的判斷,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在[1,+∞)上為增函數(shù)的是( 。
A、y=(x-2)2
B、y=|x-1|
C、y=
1
x+1
D、y=-(x+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=2,b=2,那么輸出的a值為( 。
A、log316
B、256
C、16
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求值sin34°sin26°-sin56°cos26°
(2)化簡
cos(α-
π
2
)
sin(
π
2
+α)
•sin(-α-2π)•cos(2π-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲箱中有4個(gè)紅球和2個(gè)黑球,乙箱中有3個(gè)紅球和2個(gè)黑球,這些球除顏色外,完全相同,現(xiàn)從甲、乙兩個(gè)箱中各任取2個(gè)球.
(Ⅰ)求取出的4個(gè)球均為紅球的概率;
(Ⅱ)求取出的4個(gè)球中恰有3個(gè)黑球的概率;
(Ⅲ)設(shè)ξ為取出的4個(gè)球中,黑球的個(gè)數(shù),求ξ的分布列和數(shù)字期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x2-x-1)e-x
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關(guān)于x的方程f(x)=a在區(qū)間[-1,4]上有兩個(gè)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB⊥AC,AD⊥BC,∠ABC=
π
3
,AD=
3
,現(xiàn)沿AD把△ABC折起,使BD⊥DC,E是BC上的中點(diǎn).
(1)求AE與DB所成角的余弦值;
(2)在線段AB上是否存在一點(diǎn)F,使DF⊥AE?若存在,求出
BF
BA
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),|
a
-
b
|=
10
5

(1)求cos(α-β)的值;
(2)若0<α<
π
2
,-
π
2
<β<0,且sinβ=-
5
13
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
1
c
   
b
4
(b,c為實(shí)數(shù)).若矩陣A屬于特征值2的一個(gè)特征向量為
2
1

(Ⅰ)求矩陣A的逆矩陣A-1
(Ⅱ)求直線x+y-1=0在矩陣A-1對應(yīng)的變換作用下得到的直線方程.

查看答案和解析>>

同步練習(xí)冊答案