在平面直角坐標(biāo)系xOy中,點(diǎn)A(cosθ,
2
sinθ),B(sinθ,0),其中θ∈R.
(Ⅰ)當(dāng)θ=
3
,求向量
AB
的坐標(biāo);
(Ⅱ)當(dāng)θ∈[0,
π
2
]時(shí),求|
AB
|的最大值.
考點(diǎn):平面向量數(shù)量積的坐標(biāo)表示、模、夾角
專題:平面向量及應(yīng)用
分析:(Ⅰ)把θ=
3
代入,求出向量
AB
的坐標(biāo)表示;
(Ⅱ)由向量
AB
,求出|
AB
|的表達(dá)式,在θ∈[0,
π
2
]時(shí),求出|
AB
|的最大值.
解答: 解:(Ⅰ)當(dāng)θ=
3
時(shí),向量
AB
=(sin
3
-cos
3
,0-
2
sin
3

=(
3
2
+
1
2
,-
2
×
3
2

=(
3
+1
2
,-
6
2
);
(Ⅱ)∵向量
AB
=(sinθ-cosθ,-
2
sinθ),
∴|
AB
|=
(sinθ-cosθ)2+(-
2
sinθ)
2

=
1-2sinθcosθ+2sin2θ

=
2-sin2θ-cos2θ

=
2-
2
sin(2θ+
π
4
)
;
∴當(dāng)θ∈[0,
π
2
]時(shí),2θ+
π
4
∈[
π
4
,
4
],
∴sin(2θ+
π
4
)∈[-
2
2
,1],
2
sin(2θ+
π
4
)∈[-1,
2
],
2-
2
sin(2θ+
π
4
)
3
,
即|
AB
|的最大值是
3
點(diǎn)評(píng):本題考查了平面向量的坐標(biāo)表示及其應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)向量的坐標(biāo)運(yùn)算,結(jié)合三角函數(shù)的運(yùn)算法則,求出正確的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cosα=-
4
5
,求sinα的值;
(2)已知tanα=3,計(jì)算sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊為a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大;
(Ⅱ)若b=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校為了增強(qiáng)學(xué)生對(duì)消防安全知識(shí)的了解,舉行了一次消防安全知識(shí)競(jìng)賽,其中一道題是連線題,要求將4種不同的工具與它們的4種不同的用途一對(duì)一連線,規(guī)定:每連對(duì)一條得5分,連錯(cuò)一條得-2分.某參賽者隨機(jī)用4條線把消防工具與用途一對(duì)一全部連接起來(lái).
(1)求該參賽者恰好連對(duì)一條的概率;
(2)設(shè)X為該參賽者此題的得分,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(cosx,
3
cosx),
n
=(2cosx,2sinx).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,f(A)=2,a=
3
,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+m
x-1
在區(qū)間(-∞,1]單調(diào)遞減,
(1)求實(shí)數(shù)m的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[2,5]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
3x
)n
(其中n<15)的展開(kāi)式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列.
(1)求n的值;
(2)寫出它展開(kāi)式中的所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

盒子中裝有大小質(zhì)地都相同的5個(gè)球,其中紅色1個(gè),白色2個(gè),藍(lán)色2個(gè).現(xiàn)從盒子中取出兩個(gè)球(每次只取一個(gè),并且取出后放回),則這兩個(gè)球顏色相同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=2an-3,則a5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案