A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,3) |
分析 利用換元法求出函數(shù)f(x)的解析式,然后根據(jù)函數(shù)與方程的關(guān)系進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù),判斷函數(shù)的零點(diǎn)即可得到結(jié)論.
解答 解:∵f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)?x∈(0,+∞),都有f(f(x)-lnx)=e+1,
∴設(shè)f(x)-lnx=t,則f(t)=e+1,
即f(x)=lnx+t,
令x=t,則f(t)=lnt+t=e+1,
則t=e,
即f(x)=lnx+e,
函數(shù)的導(dǎo)數(shù)f′(x)=$\frac{1}{x}$,
則由f(x)-f′(x)=e得lnx+e-$\frac{1}{x}$=e,
即lnx-$\frac{1}{x}$=0,
設(shè)h(x)=lnx-$\frac{1}{x}$,
則h(1)=ln1-1=-1<0,h(e)=lne-$\frac{1}{e}$=1-$\frac{1}{e}$>0,
∴函數(shù)h(x)在(1,e)上存在一個(gè)零點(diǎn),即方程f(x)-f′(x)=e的實(shí)數(shù)解所在的區(qū)間是(1,e),
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù) 函數(shù)單調(diào)性的性質(zhì),利用換元法求出函數(shù)的解析式是解決本題的關(guān)鍵.綜合性較強(qiáng),涉及的知識(shí)點(diǎn)較多.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x0)<x0 | B. | f(x0)=x0 | C. | f(x0)>x0 | D. | f(x0)=-x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≠±1} | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,$\frac{29}{4}$) | B. | (21,$\frac{135}{4}$) | C. | [27,30) | D. | (27,$\frac{135}{4}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com