(本題滿分15分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

   (I)證明:函數(shù)是集合M中的元素;

   (II)證明:函數(shù)具有下面的性質(zhì):對(duì)于任意,都存在,使得等式成立。 

(III)若集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:對(duì)集合M中的任一元素,方程只有一個(gè)實(shí)數(shù)根。

(Ⅰ)  見解析  (Ⅱ) 見解析  (Ⅲ)見解析


解析:

(I)證明:因?yàn)?img width=439 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/145/238145.gif">,又因?yàn)楫?dāng)x=0時(shí),,所以方程有實(shí)數(shù)根0。

    所以函數(shù)是集合M中的元素。        ………………4分

  (II)證明:

[m,n] 

又,。

也就是;

………………9分

(III)假設(shè)方程f(x)-x=0存在兩個(gè)實(shí)數(shù)根不妨設(shè),根據(jù)題意存在數(shù)

        使得等式成立。

        因?yàn)?img width=289 height=23 src="http://thumb.zyjl.cn/pic1/1899/sx/162/238162.gif">

        與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根。……15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)設(shè)函數(shù)是奇函數(shù),(1)求的值;(2)若,試求不等式的解集;(3)若,且上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的最大值;

(Ⅱ)若對(duì)任意的,都成立,求實(shí)數(shù)的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)設(shè),函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)若時(shí),不等式恒成立,實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(1)當(dāng)時(shí),取得極值,求的值;

(2)若內(nèi)為增函數(shù),求的取值范圍;

(3)設(shè),是否存在正實(shí)數(shù),使得對(duì)任意,都有成立?

若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三年級(jí)隨堂練習(xí)數(shù)學(xué)試卷 題型:解答題

(本題滿分15分)

設(shè)函數(shù).

(Ⅰ)當(dāng)時(shí),解不等式:;

(Ⅱ)求函數(shù)的最小值;

(Ⅲ)求函數(shù)的單調(diào)遞增區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案