若點(diǎn)P是曲線y=x2-ln x上任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小值為( )
A.1 | B. | C. | D. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)=+有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)=+(>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/1/skgw31.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)=+(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)f(x)是偶函數(shù),在上導(dǎo)數(shù)>0恒成立,則下列不等式成立的是( ).
A.f(-3)<f(-1)<f(2) | B.f(-1)<f(2)<f(-3) |
C.f(2)<f(-3)<f(-1) | D.f(2)<f(-1)<f(-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
.函數(shù)是上的可導(dǎo)函數(shù),時,,則函數(shù)的零點(diǎn)個數(shù)為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
函數(shù)定義在上的非負(fù)可導(dǎo)函數(shù),且滿足,對任意正數(shù), 若,則必有( ).
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
定義在R上的連續(xù)函數(shù)g(x)滿足:當(dāng)時,恒成立(為函數(shù)的導(dǎo)函數(shù));對任意的都有.函數(shù)滿足:對任意的,都有成立;當(dāng)時.若關(guān)于的不等式對恒成立. 則的取值范圍是
A.R |
B. |
C.或 |
D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
函數(shù)f(x)=ax3-x在R上為減函數(shù),則( )
A.a(chǎn)≤0 | B.a(chǎn)<1 | C.a(chǎn)<0 | D.a(chǎn)≤1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com