A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由α和β的范圍,求出β-α的范圍,然后由cosα和cos(α-β)的值,利用同角三角函數(shù)間的基本關系求出sinα和sin(β-α)的值,然后由β=(β-α)+α,利用兩角和的余弦函數(shù)公式化簡后,根據(jù)特殊角的三角函數(shù)值即可求出β的度數(shù).
解答 解:由0<α<β<$\frac{π}{2}$,得到0<β-α<$\frac{π}{2}$,又cosα=$\frac{3}{5}$,cos(α-β)=cos(β-α)=$\frac{{7\sqrt{2}}}{10}$,
所以sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,sin(β-α)=-sin(α-β)=-$\sqrt{1-co{s}^{2}(α-β)}$=-$\frac{\sqrt{2}}{10}$,
則cosβ=cos[(β-α)+α]
=cos(β-α)cosα-sin(β-α)sinα
=$\frac{{7\sqrt{2}}}{10}$×$\frac{3}{5}$-(-$\frac{\sqrt{2}}{10}$)×$\frac{4}{5}$=$\frac{\sqrt{2}}{2}$,
所以β=$\frac{π}{4}$.
故選:C.
點評 此題考查學生靈活運用同角三角函數(shù)間的基本關系及兩角和的余弦函數(shù)公式化簡求值,是一道基礎題.做題時注意角度的變換,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,3} | C. | (1,3] | D. | (1,5] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
班級學生數(shù) | 配備教師數(shù) | 硬件建設費(萬元) | 教師年薪(萬元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | 1 | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com