設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足

(1)       求數(shù)列的通項(xiàng)公式;

(2)       試確定實(shí)數(shù)的值,使得數(shù)列為等差數(shù)列;

(3)       當(dāng)數(shù)列為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列。設(shè)是數(shù)列的前項(xiàng)和,試求滿足的所有正整數(shù)。

解: (1)由題意,則,解得

因?yàn)?sub>為正整數(shù),所以

,所以

(2)當(dāng)時(shí),

同理:時(shí),得;時(shí),得,

則由,得而當(dāng)時(shí),,得。

,知此時(shí)數(shù)列為等差數(shù)列。

(3)由題意知,

則當(dāng)時(shí),,不合題意,舍去;

當(dāng)時(shí),,所以成立;

當(dāng)時(shí),若,則,不合題意,舍去;從而必是數(shù)列中的某一項(xiàng),則

,所以,

,所以

因?yàn)?sub>為奇數(shù),而為偶數(shù),所以上式無(wú)解。

即當(dāng)時(shí),

綜上所述,滿足題意的正整數(shù)僅有。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知數(shù)列,

定義其倒均數(shù)是。

   (1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項(xiàng)公式;

   (2)設(shè)等比數(shù)列的首項(xiàng)為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使得當(dāng)恒成立,試找出一個(gè)這樣的k值(只需找出一個(gè)即可,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆福建省廈門外國(guó)語(yǔ)學(xué)校高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分13分)已知數(shù)列,定義其倒均數(shù)是。
(1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列的首項(xiàng)為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使恒成立,試求k的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足).

(1)求數(shù)列的通項(xiàng)公式;

(2)試確定的值,使得數(shù)列為等差數(shù)列;

(3)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三第一學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)試確定的值,使得數(shù)列為等差數(shù)列;

(Ⅲ)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期第一次綜合練習(xí)文科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)等比數(shù)列的首項(xiàng)為,公比,前項(xiàng)和為

(Ⅰ)當(dāng)時(shí),三數(shù)成等差數(shù)列,求數(shù)列的通項(xiàng)公式;

(Ⅱ)對(duì)任意正整數(shù),命題甲: 三數(shù)構(gòu)成等差數(shù)列.

命題乙: 三數(shù)構(gòu)成等差數(shù)列.

求證:對(duì)于同一個(gè)正整數(shù),命題甲與命題乙不能同時(shí)為真命題.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案