對(duì)于函數(shù)f(x)=|x|3-x2+(3-a)|x|+b.
(1)若f(2)=7,則f(-2)=   
(2)若f(x)有六個(gè)不同的單調(diào)區(qū)間,則a的取值范圍是   
【答案】分析:由偶函數(shù)的定義,可知函數(shù)f(x)是偶函數(shù),從而易得f(-2),同時(shí),若f(x)有六個(gè)不同的單調(diào)區(qū)間,則由函數(shù)為偶函數(shù),則只要證明函數(shù)在(0,+∞)上有三個(gè)單調(diào)區(qū)間即可.即:f′(x)=0有兩個(gè)不同的正根.
解答:解:∵函數(shù)f(x)=|x|3-x2+(3-a)|x|+b.
∴f(-x)=f(x)
∴f(x)是偶函數(shù)
∵f(2)=7,
∴f(-2)=7
∵f(x)有六個(gè)不同的單調(diào)區(qū)間
又因?yàn)楹瘮?shù)為偶函數(shù)
∴當(dāng)x>0時(shí),有三個(gè)單調(diào)區(qū)間
即:f′(x)=x2-ax+3-a=0有兩個(gè)不同的正根

解得:2<a<3
故答案為:(2,3)
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性及對(duì)稱(chēng)性,還考查了根的分布問(wèn)題,這類(lèi)問(wèn)題主要通過(guò)對(duì)稱(chēng)軸,端點(diǎn)值和判別式解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

當(dāng)f(x)=2-x時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是
 
寫(xiě)出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),定義域?yàn)镈,若存在x0∈D使f(x0)=x0,則稱(chēng)(x0,x0)為f(x)的圖象上的不動(dòng)點(diǎn). 由此,函數(shù)f(x)=
9x-5x+3
的圖象上不動(dòng)點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,當(dāng)f(x)=log
1
2
x
時(shí),上述結(jié)論中正確的序號(hào)是
③④
③④
(寫(xiě)出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關(guān)于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=x3cos3(x+
π
6
),下列說(shuō)法正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案