【題目】甲船在島A的正南B處,以的速度向正北航行,,同時乙船自島A出發(fā)以的速度向北偏東60°的方向駛去,當甲、乙兩船相距最近時,它們所航行的時間為(

A. B. C. D.

【答案】A

【解析】

兩船軌跡及距離最近時兩船連線構成一個以B島為頂點,角度是120度的三角形,設兩船距離最近時航行時間為th),距離為skm),此時甲船到B島距離為(10-4tkm,乙船距離B6tkm),利用余弦定理,求出甲乙兩船相距最近時,他們的航行時間.

兩船軌跡及距離最近時兩船連線構成一個以B島為頂點,角度是120度的三角形,設兩船距離最近時航行時間為th),距離為skm),此時甲船到B島距離為(10-4tkm,乙船距離B6tkm),且有,由余弦定理得,化簡得,,拋物線開口向上,在對稱軸處有最小值,即當時,取最小值.選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論函數(shù)的單調(diào)性.

2)當時,證明:對任意的,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求證:;

(2)當時,若不等式恒成立,求實數(shù)的取值范圍;

(3)若,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)f(x)=x3ax2bxc,曲線yf(x)在點x=1處的切線方程為

ly=3x+1,且當x時,yf(x)有極值.

(1)求ab,c的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】珠海市某學校的研究性學習小組,對晝夜溫差(最高溫度與最低溫度的差)大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行了研究,該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2)

已知綠豆種子出芽數(shù)(顆) 和溫差具有線性相關關系.

(1)求綠豆種子出芽數(shù) (顆)關于溫差的回歸方程;

(2)假如4月1日至7日的日溫差的平均值為,估計4月7日浸泡的顆綠豆種子一天內(nèi)的出芽數(shù).

附:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( )

A. 對任意動點,在平面內(nèi)不存在與平面平行的直線

B. 對任意動點,在平面內(nèi)存在與平面垂直的直線

C. 當點運動到的過程中,與平面所成的角變大

D. 當點運動到的過程中,點到平面的距離逐漸變小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCDRtABCRtBCD拼接而成,其中∠BAC=∠BCD90°,∠DBC30°,ABAC,,將△ABC沿著BC折起,

1)若,求異面直線ABCD所成角的余弦值;

2)當四面體ABCD的體積最大時,求二面角ABCD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線.

(1)若直線不經(jīng)過第四象限,求的取值范圍;

(2)若直線軸負半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;

(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.

查看答案和解析>>

同步練習冊答案