【題目】

已知函數(shù)f(x)=x3ax2bxc,曲線yf(x)在點(diǎn)x=1處的切線方程為

ly=3x+1,且當(dāng)x時,yf(x)有極值.

(1)求a,bc的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

【答案】(1) a=2,b=-4, c=5 (2) 最大值為13,最小值為

【解析】試題分析:(1)對函數(shù)進(jìn)行求導(dǎo),當(dāng)x=1時,切線l的斜率為3,可得2ab0,當(dāng)x時,yf(x)有極值,則f=0,聯(lián)立得出a,b,c的值(2) 由(1)可得f(x)x32x24x5 f′(x)3x24x4.f′(x)=0,解得x1=-2,x2,研究單調(diào)性得出最值.

試題解析:

(1)由f(x)=x3ax2bxc

f′(x)=3x2+2axb.

當(dāng)x=1時,切線l的斜率為3,可得2ab=0,①

當(dāng)x時,yf(x)有極值,則f=0,可得4a+3b+4=0,②

①②,解得a=2,b=-4.

由于切點(diǎn)的橫坐標(biāo)為1,所以f(1)=4. 所以1+abc=4,得c=5.

(2)由(1)可得f(x)=x3+2x2-4x+5, f′(x)=3x2+4x-4.

f′(x)=0,解得x1=-2,x2.

當(dāng)x變化時,f′(x),f(x)的取值及變化情況如下表所示:

x

-3

(-3,-2)

-2

1

f′(x)

0

0

f(x)

8

13

4

所以yf(x)在[-3,1]上的最大值為13,最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個周期后,所得圖象對應(yīng)的函數(shù)為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(2x﹣
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實數(shù),函數(shù).

(1)若是函數(shù)的一個極值點(diǎn),求實數(shù)的取值;

(2)設(shè),若,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p為非負(fù)實數(shù),隨機(jī)變量ξ的分布列為:

ξ

0

1

2

P

﹣p

p

則D(ξ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒有平局.在一局比賽中,甲勝乙的概率為 ,甲勝丙的概率為 ,乙勝丙的概率為 .比賽順序為:首先由甲和乙進(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局?jǐn)?shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】⊙O1和⊙O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=﹣4sinθ.
(1)⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過⊙O1和⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=a|x﹣b|+c滿足①函數(shù)f(x)的圖象關(guān)于x=1對稱;②在R上有大于零的最大值;③函數(shù)f(x)的圖象過點(diǎn)(0,1);④a,b,c∈Z,試寫出一組符合要求的a,b,c的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,求:

(1);(2) 的值.

查看答案和解析>>

同步練習(xí)冊答案