2.與命題“若a∈M,則b∈M”等價的命題是(  )
A.若a∈M,則b∉MB.若b∈M,則a∉MC.若b∉M,則a∈MD.若b∉M,則a∉M

分析 求出命題“若a∈M,則b∈M”的逆否命題,由此能求出命題“若a∈M,則b∈M”等價的命題.

解答 解:命題“若a∈M,則b∈M”的逆否命題是:
“若b∉M,則a∉M”,
原命題與逆否命題是等價命題,
∴命題“若a∈M,則b∈M”等價的命題是“若b∉M,則a∉M”.
故選:D.

點評 本題考查命題的等價命題的求法,是基礎(chǔ)題,解題時要認真審題,注意原命題與逆否命題是等價命題的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={x|-1<x<3},B={x|x<1},則A∩(∁UB)=( 。
A.{x|1<x<3}B.{x|1≤x<3}C.{x|1<x≤3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow$=(-2,sinα),且$\overrightarrow{a}$∥$\overrightarrow$.
(1)求tan(π+α)的值;
(2)求3sin2α-sin(2π-α)cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某貨輪勻速行駛在相距300海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其他費用組成.已知該貨輪每小時的燃料費用w與其航行速度x的平方成正比(即:w=kx2,其中k為比例系數(shù));當(dāng)航行速度為30海里/小時時,每小時的燃料費用為450元,其他費用為每小時800元,且該貨輪的最大航行速度為50海里/小時.
(1)請將從甲地到乙地的運輸成本y(元)表示為航行速度x(海里/小時)的函數(shù);
(2)要使從甲地到乙地的運輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}滿足a1=1,a4=4;數(shù)列{bn}滿足b1=a2,b2=a5,數(shù)列{bn-an}為等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)S兩顆骰子,擲得的點數(shù)和大于9的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知p:$\frac{1}{a-2}≥\frac{1}{2}$成立,q:函數(shù)f(x)=-(a-1)x(a>1且a≠2)是減函數(shù),則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.從裝有質(zhì)地、大小均相同的3個紅球和2個白球的口袋內(nèi)任取兩個球,給出下列各對事件:①至少有1個白球;都是紅球;②至少有1個白球;至少有1個紅球;③恰好有1個白球;恰好有2個白球.其中,互斥事件的對數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用一張正方形鐵片剪一個直角邊長分別為4cm和1cm的直角三角形鐵片.所需正方形鐵片的邊長的最小值為$\frac{16}{5}$cm.

查看答案和解析>>

同步練習(xí)冊答案