6.若三個實數(shù)2,m,6成等差數(shù)列,則m的值為4.

分析 直接由等差中項的概念列式求得m值.

解答 解:∵三個實數(shù)2,m,6成等差數(shù)列,
∴由等差中項的概念可得:$m=\frac{2+6}{2}=4$.
故答案為:4.

點評 本題考查等差數(shù)列的通項公式,考查了等差中項的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={$\overline{-1+i}$,($\frac{1-i}{1+i}$)2,i3,|${\frac{1}{2}$-$\frac{1}{2}$i|}(其中i為虛數(shù)單位),B={x|x2<1},則A∩B=( 。
A.{-1}B.{1}C.$\{-1,\frac{{\sqrt{2}}}{2}\}$D.$\{\frac{{\sqrt{2}}}{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}的前n項和為Sn,a3=1且a4,a3+a5,a6為等差數(shù)列{bn}的前三項.
(1)求Sn與數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}$}的前n項和Tn,試問是否存在正整數(shù)m,對任意的n∈N*使得Tn•bm≤1?若存在請求出m的最大值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.求函數(shù)$y=\sqrt{{x^2}-8x+17}+\sqrt{{x^2}+4}$的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線l:y=k(x+2),曲線$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,則當(dāng)k∈[-1,1],直線l與曲線Γ有兩個交點的概率為(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{{\sqrt{2}}}{6}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=-2px(p>0)的準(zhǔn)線與圓(x-4)2+y2=1相切,則此拋物線上一點P(-3,m)到焦點的距離為( 。
A.2B.6或8C.8D.2或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.5人排成一排照相,其中甲乙必須相鄰的排法種數(shù)有( 。
A.72B.60C.48D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={a1,a2,…an}中的元素都是正整數(shù),且a1<a2<…<an,集合A具有性質(zhì)M:對于任意的x,y∈A(x≠y),都有$|{x-y}|>\frac{xy}{25}$
(Ⅰ)判斷集合{1,2,3,4}是否具有性質(zhì)M
(Ⅱ)求證:$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$
(Ⅲ)求集合A中元素個數(shù)的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3+log2x;
(2)y=(x-2)2(3x+1)2;
(3)y=2xlnx;
(4)$y=\frac{x^2}{sinx}$.

查看答案和解析>>

同步練習(xí)冊答案