如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點(diǎn)F是PB的中點(diǎn),E為邊BC上的動(dòng)點(diǎn).
(1)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF
(2)當(dāng)BE等于何值時(shí),二面角P-DE-A的大小為45°
(3)在(2)問(wèn)的條件下,求P點(diǎn)到角AEF的距離.
分析:(1)由題設(shè)條件及圖形可得出AF⊥平面PBE,由線面垂直的定義可得出無(wú)論點(diǎn)E在邊BC的何處兩線都垂直.
(2)以A為坐標(biāo)原點(diǎn),AD,AB,AP為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,由題設(shè)知PD=2,AB=
3
,則P(0,0,1),D(
3
,0,0),設(shè)A(a,1,0),(0≤a≤
3
),故
PE
=(a,1,-1),
PD
=(
3
,0,-1)
,由向量法知BE=
3
-
2
時(shí),二面角P-DE-A的大小為45°.
(3)當(dāng)BE=
3
-
2
時(shí),A(0,0,0),E(
3
-
2
,1,0
),F(xiàn)(0,
1
2
1
2
),故
AE
=(
3
-
2
,1,0
),
AF
=(0,
1
2
,
1
2
),由向量法能求出P點(diǎn)到面AEF的距離.
解答:(1)證明:∵PA⊥平面ABCD,BE?平面ABCD,
∴EB⊥PA.又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,
∴EB⊥平面PAB,
又AF?平面PAB,
∴AF⊥BE.
又PA=AB=1,點(diǎn)F是PB的中點(diǎn),
∴AF⊥PB,又∵PB∩BE=B,PB,BE?平面PBE,
∴AF⊥平面PBE.
∵PE?平面PBE,∴AF⊥PE.
即不論點(diǎn)E在邊BC上何處,都有PE⊥AF成立.
(2)解:以A為坐標(biāo)原點(diǎn),AD,AB,AP為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,
∵PA⊥平面ABCD,ABCD是矩形,PA=AB=1,
PD與平面ABCD所成角是30°,點(diǎn)F是PB的中點(diǎn),E為邊BC上的動(dòng)點(diǎn),
∴PD=2,AB=
3
,則P(0,0,1),D(
3
,0,0),設(shè)A(a,1,0),(0≤a≤
3
),
PE
=(a,1,-1),
PD
=(
3
,0,-1)
,
設(shè)平南PDE的法向量
n1
=(x1,y1z1)
,
ax1+y1-z1=0
3
x1-z1=0

n1
=(1,
3
-a,
3
)
,
面ADE的法向量是
n
=(0,0,1)
,
∵二面角P-DE-A的大小為45°
∴|cos
n
n1
|=|
3
4+(
3
-a)
2
|=
2
2
,
解得a=
3
-
2
,或a=
3
+
2
(舍去).
∴BE=
3
-
2
時(shí),二面角P-DE-A的大小為45°.
(3)當(dāng)BE=
3
-
2
時(shí),
A(0,0,0),E(
3
-
2
,1,0
),F(xiàn)(0,
1
2
,
1
2
),
AE
=(
3
-
2
,1,0
),
AF
=(0,
1
2
,
1
2
),
設(shè)面AEF的法向量
n2
=(x2,y2,z2)

(
3
-
2
)x2+y2=0
1
2
y2 + 
1
2
z2=0
,
n2
=(1,
2
-
3
,
3
-
2
)
,
AP
=(0,0,1)

∴P點(diǎn)到面AEF的距離d=
|
AP
n2
|
|
n2
|
=
3
-
2
11-4
6
=
3
-
2
2
2
-
3
=
6
-1
5
點(diǎn)評(píng):本題考查無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF的證明,求當(dāng)BE等于何值時(shí),二面角P-DE-A的大小為45°,求P點(diǎn)到角AEF的距離.考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò).是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點(diǎn).
(1)求二面角P-CD-B的大小;
(2)求證:平面MND⊥平面PCD;
(3)求點(diǎn)P到平面MND的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點(diǎn)F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
,PB=
6

(1)證明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•天津模擬)如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點(diǎn)
F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng),
(Ⅰ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF;
(Ⅲ)當(dāng)BE等于何值時(shí),二面角P-DE-A的大小為45°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并求出EF到平面PAC的距離;
(2)命題:“不論點(diǎn)E在邊BC上何處,都有PE⊥AF”,是否成立,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案