在一條筆直的工藝流水線上有n個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為x1,x2,……,xn,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(Ⅰ)若n=3,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(Ⅱ)若n=5,工作臺(tái)從左到右的人數(shù)依次為3,2,1,2,2,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

答案:
解析:

  解設(shè)供應(yīng)站坐標(biāo)為,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為

  (Ⅰ).  

  當(dāng)時(shí),在區(qū)間上是減函數(shù);

  當(dāng)時(shí),在區(qū)間上是增函數(shù).  

  所以,必須位于區(qū)間內(nèi),此時(shí),當(dāng)且僅當(dāng)時(shí),式取最小值,且,即供應(yīng)站的位置為

  (Ⅱ)由題設(shè)知,各工作臺(tái)上的所有工人到供應(yīng)站的距離之和為

  .  

  類似于(Ⅰ)的討論知,,且有

    

  所以,函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),在區(qū)間上是常數(shù).故供應(yīng)站位置位于區(qū)間上任意一點(diǎn)時(shí),均能使函數(shù)取得最小值,且最小值為  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一條筆直的工藝流水線上有n個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為x1,x2,…,xn,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若n=3,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若n=5,工作臺(tái)從左到右的人數(shù)依次為3,2,1,2,2,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省高考適應(yīng)性測(cè)試數(shù)學(xué)(文) 題型:解答題

(本小題滿分13分)
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在之間修建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)設(shè)工作臺(tái)從左到右的人數(shù)依次為,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

圖5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省三校高三上學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省煙臺(tái)市高三上學(xué)期模塊檢測(cè)數(shù)學(xué)文卷 題型:解答題

本題滿分12分)

在一條筆直的工藝流水線上有三個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在之間修建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.

(1)若每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;

(2)設(shè)三個(gè)工作臺(tái)從左到右的人數(shù)依次為2,1,3,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南省高考適應(yīng)性測(cè)試數(shù)學(xué)(理) 題型:解答題

(本小題滿分13分)
在一條筆直的工藝流水線上有個(gè)工作臺(tái),將工藝流水線用如圖所示的數(shù)軸表示,各工作臺(tái)的坐標(biāo)分別為,,,,每個(gè)工作臺(tái)上有若干名工人.現(xiàn)要在流水線上建一個(gè)零件供應(yīng)站,使得各工作臺(tái)上的所有工人到供應(yīng)站的距離之和最短.
(Ⅰ)若,每個(gè)工作臺(tái)上只有一名工人,試確定供應(yīng)站的位置;
(Ⅱ)若,工作臺(tái)從左到右的人數(shù)依次為,,,,試確定供應(yīng)站的位置,并求所有工人到供應(yīng)站的距離之和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案