(2011•上海模擬)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1(n∈N*)之間插入n個(gè)1,構(gòu)成如下的新數(shù)列:a1,1,a2,1,1,a3,1,1,1,a4,…,求這個(gè)數(shù)列的前2012項(xiàng)的和;
(3)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個(gè)數(shù)構(gòu)成第一個(gè)等差數(shù)列,其公差為d1;在a2與a3之間插入2個(gè)數(shù)構(gòu)成第二個(gè)等差數(shù)列,其公差為d2,…以此類推),設(shè)第n個(gè)等差數(shù)列的和是An.是否存在一個(gè)關(guān)于n的多項(xiàng)式g(n),使得An=g(n)dn對(duì)任意n∈N*恒成立?若存在,求出這個(gè)多項(xiàng)式;若不存在,請(qǐng)說(shuō)明理由.