設(shè)函數(shù)。

(1)若,求的單調(diào)區(qū)間;

(2)若當(dāng)時(shí),,求a的取值范圍。

 

(1)在單調(diào)減少,在單調(diào)增加

(2)

【解析】(1)時(shí),,

當(dāng)時(shí),;當(dāng)時(shí),.故單調(diào)減少,在單調(diào)增加

(2)

由(1)知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故

,

從而當(dāng),即時(shí),,而

于是當(dāng)時(shí),.

可得.從而當(dāng)時(shí),

,

故當(dāng)時(shí),,而,于是當(dāng)時(shí),.

綜合得的取值范圍為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科全稱量詞與存在性量詞(解析版) 題型:選擇題

已知命題p:“?x∈[1,2],x2-a≥0”;命題q:“?x∈R,x2+2ax+2-a=0”.若命題“p且q”是真命題,則實(shí)數(shù)a的取值范圍為(  )

A.a(chǎn)≤-2或a=1

B.a(chǎn)≤-2或1≤a≤2

C.a(chǎn)≥1

D.-2≤a≤1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科三角函數(shù)的圖象與性質(zhì)(解析版) 題型:選擇題

已知>0,函數(shù)f(x)=sin(x+)在(,)上單調(diào)遞減,則的取值范圍是(    )

A.[,]

B.[,]

C.[0,]

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文空間線面平行、面面平行、線面垂直、面面垂直(解析版) 題型:選擇題

已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,l?α,l?β,則(    )

A.α∥β且l∥α

B.α⊥β且l⊥β

C.α與β相交,且交線垂直于l

D.α與β相交,且交線平行于l

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測(cè)題(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測(cè)題(解析版) 題型:解答題

已知

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若 求函數(shù)的單調(diào)區(qū)間;

(3)若不等式恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測(cè)題(解析版) 題型:解答題

已知橢圓,為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與軸的交點(diǎn)是

(1)點(diǎn)在已知橢圓上,動(dòng)點(diǎn)滿足,求動(dòng)點(diǎn)的軌跡方程;

(2)過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn),求的面積的最大值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科集合的表示、集合的運(yùn)算、集合間的運(yùn)算關(guān)系(解析版) 題型:選擇題

集合,則(   )

A. (1,2)

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題后三題(解析版) 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且

(1)求橢圓的方程;

(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案