已知
a
=(1,2)
,
b
=(x,1)
,向量
a
+2
b
2
a
-
b
垂直,
(1)求x的值;
(2)若x<0,求證:
a
b
分析:(1)由題意求得
a
+2
b
2
a
-
b
的坐標,再根據(jù)(
a
+2
b
)•( 2
a
-
b
)=0求得x的值.
(2)若x<0,則x=-2,再由
a
b
=x+2=0,可得
a
b
解答:解:(1)由題意可得
a
+2
b
=(1+2x,4),2
a
-
b
=(2-x,3),
a
+2
b
)•( 2
a
-
b
)=(1+2x)(2-x)+12=-2x2+3x+14=0,
求得 x=-2,或 x=
7
2

(2)若x<0,則x=-2.
再由
a
b
=x+2=-2+2=0,
可得
a
b
點評:本題主要考查兩個向量的數(shù)量積公式,兩個向量垂直的條件,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,當k為何值時,
(1)k
a
+
b
a
-3
b
垂直?
(2)k
a
+
b
a
-3
b
平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={1,2,3,4,5,6,7,8,9},B={1,2,3},C={3,4,5,6},則A∩(B∪C)=
{1,2,3,4,5,6}
{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,
(1)求
a
-3
b

(2)當k
a
+
b
a
-3
b
平行時,求實數(shù)k的值.它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•朝陽區(qū)二模)對于正整數(shù)a,b,存在唯一一對整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當r=0時,稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個元素的任意子集為“和諧集”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={1,2,3},B={1,2}.定義集合A、B之間的運算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},則集合A*B的所有子集的個數(shù)為
16
16

查看答案和解析>>

同步練習冊答案