1.在距離2016年央視春晚直播不到20天的時(shí)候,某媒體報(bào)道,由六小齡童和郭富城合演的《猴戲》節(jié)目被斃,為此,某網(wǎng)站針對(duì)“是否支持該節(jié)目上春晚”對(duì)網(wǎng)民進(jìn)行調(diào)查,得到如下數(shù)據(jù):
網(wǎng)民態(tài)度支持反對(duì)無(wú)所謂
人數(shù)(單位:人)8000600010 000
若采用分層抽樣的方法從中抽取48人進(jìn)行座談,則持“支持”態(tài)度的網(wǎng)民抽取的人數(shù)為16.

分析 先求出每個(gè)個(gè)體被抽到的概率,再把此概率乘以持“支持”態(tài)度的網(wǎng)民的人數(shù),即得所求.

解答 解:每個(gè)個(gè)體被抽到的概率等于$\frac{48}{8000+6000+10000}$=$\frac{1}{500}$,
∴$\frac{1}{500}$×8000=16,
故答案為:16.

點(diǎn)評(píng) 本題主要考查分層抽樣的定義和方法,用每層的個(gè)體數(shù)乘以每個(gè)個(gè)體被抽到的概率等于該層應(yīng)抽取的個(gè)體數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線${x^2}=-\frac{1}{4}y$的焦點(diǎn)坐標(biāo)是( 。
A.(-1,0)B.(-2,0)C.$(0,-\frac{1}{8})$D.$(0,-\frac{1}{16})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$cosα=-\frac{3}{5}$,$α∈(\frac{π}{2},π)$.
(1)求cos2α的值;     
(2)求$sin(α+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù),定義:若f(x)=ax3+bx2+cx+d(a≠0),且方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的對(duì)稱中心.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有對(duì)稱中心”,請(qǐng)你運(yùn)用這一發(fā)現(xiàn)處理下列問(wèn)題:
設(shè)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.證明:不等式$\sqrt{m+1}-\sqrt{m}<\sqrt{m-1}-\sqrt{m-2}$(m≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.曲線y=x2-1在點(diǎn)(1,0)處的切線方程為( 。
A.y=x-1B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(  )
A.y=|x|(x∈R)B.y=-x3(x∈R)C.$y={(\frac{1}{2})^x}(x∈R)$D.$y=\frac{1}{x}(x∈R,且x≠0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.以下四個(gè)命題中正確的是(  )
A.命題“對(duì)任意的x∈R,x2≥0”的否定是“對(duì)任意的x∈R,x2≤0”
B.命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”
C.記向量$\overrightarrow{a}$=(1,-1)與$\overrightarrow$=(2,m)的夾角為θ,則“|$\overrightarrow$|=$\sqrt{5}$”是“夾角θ為銳角”的充分不必要條件
D.記變量x,y滿足的不等式組$\left\{\begin{array}{l}{-1≤x≤1}\\{0≤y≤2}\\{-x+y≥1}\end{array}\right.$表示的平面區(qū)域?yàn)镈,則“k=-1”是“直線y=kx+1平分平面區(qū)域Dy=kx+1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,某人在一小斜坡上的點(diǎn)P(坡高h(yuǎn)=10m)觀看對(duì)面一座大樓頂上的廣告畫,畫高BC=8m,畫所在的大樓高OB=22m,OA=20m,圖上所示的山坡坡面可視為直線l,且點(diǎn)P在直線l上,l與水平地面的夾角為α,tanα=$\frac{1}{2}$.試問(wèn):此人所在的點(diǎn)P距水平地面多高時(shí),觀看廣告畫的視角∠BPC最大?(不計(jì)此人身高,樓OB與斜坡l在同一平面內(nèi))

查看答案和解析>>

同步練習(xí)冊(cè)答案