8.已知線段AB的端點(diǎn)B的坐標(biāo)是(-4,3),端點(diǎn)A在圓(x-1)2+y2=4上運(yùn)動,求線段AB的中點(diǎn)M的軌跡方程.

分析 設(shè)出A和M的坐標(biāo),由中點(diǎn)坐標(biāo)公式把A的坐標(biāo)用M的坐標(biāo)表示,然后代入圓的方程即可得到答案.

解答 解:設(shè)A(x1,y1),線段AB的中點(diǎn)M為(x,y).
則$\left\{\begin{array}{l}\frac{-4+{x}_{1}}{2}=x\\ \frac{3+{y}_{1}}{2}=y\end{array}\right.$,即$\left\{\begin{array}{l}{x}_{1}=2x+4\\{y}_{1}=2y-3\end{array}\right.$①.
∵端點(diǎn)A在圓(x-1)2+y2=4上運(yùn)動,
∴(2x+3)2+(2y-3)2=4.
∴線段AB的中點(diǎn)M的軌跡方程是(x+$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.
故答案為:(x+$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1.

點(diǎn)評 本題考查了與直線有關(guān)的動點(diǎn)軌跡方程,考查了代入法,關(guān)鍵是運(yùn)用中點(diǎn)坐標(biāo)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x)其中(a>0且a≠1).
(1)判斷f(x)-g(x)的奇偶性,并說明理由;
(2)求使f(x)-g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)={log_a}({a-{a^x}})({0<a<1})$的反函數(shù)為f-1(x)
(1)判斷f(x)的單調(diào)性并證明;
(2)解關(guān)于x的不等式f-1(x2-2)<f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?k∈R,使直線y=kx+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)無公共點(diǎn)”為假命題,則實數(shù)b的取值范圍是b≥1且b≠2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左焦點(diǎn)為F(-1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求k的取值范圍;
(3)在y軸上,是否存在定點(diǎn)E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{f(x+2)+1,x<3}\\{{3^x},x≥3}\end{array}}\right.$,則f(log34)=( 。
A.4B.28C.37D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=x+\frac{1}{x}$,
(1)證明f(x)在[1,+∞)上是增函數(shù);
(2)求f(x)在[2,7]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在正方體AC1中,求直線A1C1與直線B1C所成的角度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.小張家想利用一面長度超過20m的墻,再用竹籬笆圍成一個矩形雞場,小張家已備足可以圍20m長的竹籬笆.試問:矩形雞場的長和寬各為多少米時,雞場的面積最大?最大面積是多少平方米?

查看答案和解析>>

同步練習(xí)冊答案