直線與橢圓交于,兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)(為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.
(Ⅰ)(Ⅱ)(Ⅲ)三角形的面積為定值。證明見解析
【解析】(I)由e和橢圓過點(diǎn)可得到關(guān)于a,b的兩個(gè)方程,從而解出a,b值求出橢圓的方程.
(II) 設(shè)的方程為,由已知得:
=0,
然后直線方程與橢圓方程聯(lián)立消y后得到關(guān)于x的一元二次方程,利用韋達(dá)定理建立關(guān)于k的方程求出k值.
(III)要討論AB斜率存在與不存在兩種情況.研究當(dāng)AB斜率存在時(shí),由已知,得,又在橢圓上, 所以 ,從而證明出為定值.
解:(Ⅰ)∵ ……2分
∴
∴橢圓的方程為……………3分
(Ⅱ)依題意,設(shè)的方程為
由
顯然
………………5分
由已知得:
解得 ……………………6分
(Ⅲ)①當(dāng)直線斜率不存在時(shí),即,
由已知,得
又在橢圓上,
所以
,三角形的面積為定值.………7分
②當(dāng)直線斜率存在時(shí):設(shè)的方程為
必須 即
得到, ………………9分
∵,∴
代入整理得: …………………10分
…………11分
所以三角形的面積為定值. ……12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
25 |
y2 |
16 |
PF1 |
PF2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年東城區(qū)期末理)(13分)
已知橢圓的對(duì)稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),又點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的方程為,點(diǎn)的坐標(biāo)滿足過點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)為線段的中點(diǎn),求:
(1)點(diǎn)的軌跡方程;
(2)點(diǎn)的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶市高三模擬考試(三模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知焦點(diǎn)在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們?cè)诘谝幌笙藿稽c(diǎn)的坐標(biāo)為,設(shè)直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同兩點(diǎn),與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2010-2011學(xué)年重慶市主城八區(qū)高三第二次學(xué)業(yè)調(diào)研抽測(cè)文科數(shù)學(xué)卷 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且⊥.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于、兩點(diǎn),
若點(diǎn)使得以為鄰邊的平行四邊形是菱形,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com