對(duì)于函數(shù)f(x)=a-
22x+1
 
(a∈R)
. 
(1)探索函數(shù)f(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a使得f(x)為奇函數(shù).
分析:(1)設(shè)x1<x2,化簡計(jì)算f(x1)-f(x2)的解析式到因式乘積的形式,判斷符號(hào),得出結(jié)論.
(2))假設(shè)存在實(shí)數(shù)a使f(x)為奇函數(shù),∴f(-x)=-f(x),由此等式解出a的值,若a無解,說明不存在實(shí)數(shù)a使f(x)為奇函數(shù),若a有解,說明存在實(shí)數(shù)a使f(x)為奇函數(shù).
解答:解:(1)∵f(x)的定義域?yàn)镽,設(shè)x1<x2,
f(x1)-f(x2)=a-
1
2x1+1
-a+
1
2x2+1
=
2x1-2x2
(1+2x1)(1+2x2)
,(3分)
∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0,(5分)
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不論a為何實(shí)數(shù)f(x)總為增函數(shù).(6分)
(2)假設(shè)存在實(shí)數(shù)a使f(x)為奇函數(shù),∴f(-x)=-f(x)(7分)
a-
2
2-x+1
=-a+
2
2x+1
,(9分)
解得:a=1,故存在實(shí)數(shù)a使f(x)為奇函數(shù).  (12分)
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=a-
22x+1
(a∈R)

(Ⅰ) 是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?
(Ⅱ) 探究函數(shù)f(x)的單調(diào)性(不用證明),并求出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•山東模擬)對(duì)于函數(shù)f(x)=a-
22x+1
(a∈R)

(1)用函數(shù)單調(diào)性的定義證明f(x)在(-∞,+∞)上是增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=a-
2bx+1
 (a∈R,b>0且b≠1)
(1)判斷函數(shù)的單調(diào)性并證明;
(2)是否存在實(shí)數(shù)a使函數(shù)f (x)為奇函數(shù)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=a-
12x+1
(a∈R):

(1)探究函數(shù)f(x)的單調(diào)性,并給予證明;
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案