10.我們用圓的性質(zhì)類比球的性質(zhì)如下:
①p:圓心與弦(非直徑)中點的連線垂直于弦;q:球心與小圓截面圓心的連線垂直于截面.
②p:與圓心距離相等的兩條弦長相等;    q:與球心距離相等的兩個截面圓的面積相等.
③p:圓的周長為C=πd(d是圓的直徑);    q:球的表面積為S=πd2(d是球的直徑).
④p:圓的面積為S=$\frac{1}{2}$R•πd(R,d是圓的半徑與直徑);q:球的體積為V=$\frac{1}{3}$R•πd2(R,d是球的半徑與直徑).
則上面的四組命題中,其中類比得到的q是真命題的有(  )個.
A.1B.2C.3D.4

分析 類比推理注意二維到三維過程中的變化,平面變立體,面積變體積.

解答 解:我們用圓的性質(zhì)類比球的性質(zhì)如下:
①p:圓心與弦(非直徑)中點的連線垂直于弦;q:球心與小圓截面圓心的連線垂直于截面,故正確;
②p:與圓心距離相等的兩條弦長相等;    q:與球心距離相等的兩個截面圓的面積相等,故正確;
③p:圓的周長為C=πd(d是圓的直徑);    q:球的表面積為S=πd2(d是球的直徑),故正確;
④p:圓的面積為S=$\frac{1}{2}$R•πd(R,d是圓的半徑與直徑);q:球的體積為V=$\frac{1}{3}$R•πd2(R,d是球的半徑與直徑),故正確,
故選:D.

點評 本題考查了類比推理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某地政府調(diào)查了工薪階層1000人的月工資收入,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收入分組區(qū)間是[10,15),[15,20),[20,25),[25,30)[30,35),[35,40](單位:百元)
(Ⅰ)為了了解工薪階層對工資收入的滿意程度,要用分層抽樣的方法從調(diào)查的1000人中抽取100人做電話詢問,求月工資收入在[30,35)內(nèi)應(yīng)抽取的人數(shù);
(Ⅱ)根據(jù)頻率分布直方圖估計這1000人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若{$\frac{{a}_{n}}{n}$+1}是公比為2的等比數(shù)列,且a1=1,則a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知奇函數(shù)f(x)在R上是增函數(shù).若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為正項等比數(shù)列,則有$\root{5}{{_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{_{1}b}_{2}b}_{3}••{•b}_{15}}$成立”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖1所示,在△ABC中,AB⊥AC,AD⊥BC,則AB2=BD•BC.類似有命題:在三棱錐A-BCD中,如圖2所示,AD⊥面ABC.若A在△BCD內(nèi)的射影為O,E在BC上,且E,O,D在同一條直線上,則S△ABC2=S△BCO•S△BCD,此命題是(  )
A.假命題
B.增加AB⊥AC的條件才是真命題
C.真命題
D.增加三棱錐A-BCD是正棱錐的條件才是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)$[{\begin{array}{l}2\\ 3\end{array}}]$是矩陣$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一個特征向量.
(1)求實數(shù)a的值;
(2)求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z滿足(1-i)z=2+2i(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某高校從4名男大學(xué)生志愿者和3名女大學(xué)生志愿者中選3名派到3所學(xué)校支教(每所學(xué)校1名志愿者),要求這3名志愿者中男、女大學(xué)生都有,則不同的選派方案共有( 。
A.210種B.180種C.150種D.120種

查看答案和解析>>

同步練習(xí)冊答案