已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+
3
2
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
(3)當(dāng){bn}為等差數(shù)列時(shí),對(duì)任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.
(1)因?yàn)?a3=8a1+a5,所以6q2=8+q4,
解得q2=4或q2=2(舍),則q=2
又a1=2,所以an=2n
(2)由2n2-(t+bn)n+
3
2
bn=0,得bn=
2n2-tn
n-
3
2
,
所以b1=2t-4,b2=16-4t,b3=12-2t,
則由b1+b3=2b2,得t=3
而當(dāng)t=3時(shí),bn=2n,由bn+1-bn=2(常數(shù))知此時(shí)數(shù)列{bn}為等差數(shù)列;
(3)因?yàn)閏1=c2=c3=2,易知m=1不合題意,m=2適合題意
當(dāng)m≥3時(shí),若后添入的數(shù)2等于cm+1個(gè),則一定不適合題意,
從而cm+1必是數(shù)列{an}中的某一項(xiàng)ak+1,
則(2+22+23+…+2k)+2(b1+b2+b3+…+bk)=2×2k+1,
2×(2k-1)+
(2+2k)k
2
×2=2×2k+1
,即2k+1-2k2-2k+2=0.
也就是2k=k2+k-1,
易證k=1,2,3,4不是該方程的解,而當(dāng)n≥5時(shí),2n>n2+n-1成立,證明如下:
1°當(dāng)n=5時(shí),25=32,k2+k-1=29,左邊>右邊成立;
2°假設(shè)n=k時(shí),2k>k2+k-1成立,
當(dāng)n=k+1時(shí),2k+1>2k2+2k-2=(k+1)2+(k+1)-1+k2-k-3
≥(k+1)2+(k+1)-1+5k-k-3=(k+1)2+(k+1)-1+k+3(k-1)>(k+1)2+(k+1)-1
這就是說(shuō),當(dāng)n=k+1時(shí),結(jié)論成立.
由1°,2°可知,2n>n2+n-1(n≥5)時(shí)恒成立,故2k=k2+k-1無(wú)正整數(shù)解.
綜上可知,滿足題意的正整數(shù)僅有m=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案