設M是m、n、p分別是的最小值是(       )

A.8        B.9        C.16       D.18

 

【答案】

 D 由條件可得,,∴,而,∴,∴,當且僅當時等號成立.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C經過點A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點D(0,3),且斜率為k的直線l與圓C有兩個不同的交點E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關于點(
3
2
,1)
對稱的曲線為圓Q,設M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個動點,點M關于原點的對稱點為M1,點M關于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M是△ABC中任意一點,且
AB
MC
=2
3
+
AB
MA
,∠BAC=30°
,定義f(P)=(m,n,p),其中m、n、p分別表示△MBC、△MCA、△MAB的面積,若f(Q)=(
1
2
,x,y)
,則在平面直坐標系中點(x,y)的軌跡是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0
與圓O相交于A、B兩點,求|AB|;
(2)如圖,設M(x1,y1)、P(x2,y2)是圓O上的兩個動點,點M關于原點的對稱點為M1,點M關于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)設M是橢圓上的一點,P、Q、T分別為M關于y軸、原點、x軸的對稱點,N為橢圓C上異于M的另一點,且MN⊥MQ,QN與PT的交點為E,當M沿橢圓C運動時,求動點E的軌跡方程.

查看答案和解析>>

同步練習冊答案