已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)給出下列命題:
①F(x)=|f(x)|; 
②函數(shù)F(x)是奇函數(shù);
③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是( )
A.②
B.①③
C.②③
D.①②
【答案】分析:由題意得,F(xiàn)(x)=,再寫出|f(x)|的表達式,它和F(x)并不是同一個函數(shù),故①錯誤;利用函數(shù)奇偶性的定義可證得當(dāng)x>0或x<0時,F(xiàn)(-x)=-F(x);故函數(shù)F(x)是奇函數(shù),②正確;當(dāng)a<0時,F(xiàn)(x)在(0,+∞)上是減函數(shù),利用函數(shù)的單調(diào)性可得③正確.
解答:解:由題意得,F(xiàn)(x)=,
而|f(x)|=,它和F(x)并不是同一個函數(shù),故①錯誤;
∵函數(shù)f(x)=a•2|x|+1是偶函數(shù),
當(dāng)x>0時,-x<0,則F(-x)=-f(-x)=-f(x)=-F(x);
當(dāng)x<0時,-x>0,則F(-x)=f(-x)=f(x)=-F(x);
故函數(shù)F(x)是奇函數(shù),②正確;
當(dāng)a<0時,F(xiàn)(x)在(0,+∞)上是減函數(shù),
若mn<0,m+n>0,總有m>-n>0,
∴F(m)<F(-n),即f(m)<-F(n),
∴F(m)+F(n)<0成立,故③正確.
故選C.
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、命題的真假判斷與應(yīng)用等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案