某學校高一年學生在某次數(shù)學單元測試中,成績在[120,150]的頻數(shù)分布表如下:
分數(shù) [120,130) [130,140) [140,150]
頻數(shù) 60 20 20
(Ⅰ)用分層抽樣的方法從成績在[120,130),[130,140)和[140,150]的同學中共抽取5人,其中成績在[120,130)的有幾人?
(Ⅱ)從(Ⅰ)中抽出的5人中,任取2人,求成績在[120,130)和[130,140)中各有1人的概率?
考點:古典概型及其概率計算公式,分層抽樣方法
專題:概率與統(tǒng)計
分析:(Ⅰ)利用頻數(shù)分布表和分層抽樣方法求解.
(Ⅱ)利用古黃概型概率計算公式求解.
解答: 解:(Ⅰ)根據(jù)頻數(shù)分布表,成績在[120,130],[130,140],[{40,150]中共有100人,
成績在[120,130]的有60人,…(2分)
故用分層抽樣的方法抽取成績在[120,130]的人數(shù)為
60
100
×
5=3.…(4分)
(Ⅱ)從(Ⅰ)中抽出的5人中,成績在[120,130]的有3名同學,
成績在[130,140]和[140,150]的各有1名同學,
成績在[120,130)和[130,140)中各有1人的概率:
p=
C
1
3
C
1
1
C
2
5
=
3
10
.…(10分)
點評:本題考查分層抽樣方法的應用,考查概率的求法,是基礎題,解題時要認真審題,注意頻數(shù)分布表的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),又f(-2)=0,則x•f(x)<0的解集是( 。
A、{x|x<-2或0<x<2}
B、{x|-2<x<0或x>2}
C、{x|x<-2或x>2}
D、{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:存在a>0,使函數(shù)f(x)=x+
a
x
在區(qū)間(1,2)上單調(diào)遞增;命題q:對任意x∈R,不等式|x-1|-|x+2|<4a都成立.
(1)若“p且q”為真,求a的取值范圍;
(2)若“?p且?q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=4x3+ax2+bx+5在x=
3
2
與x=-1時有極值;
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調(diào)區(qū)間;
(3)求f(x)在[-1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(a+b+c)(a-b+c)=3ac.
(I)求B
(Ⅱ)若f(x)=
3
-sinωx-2
3
sin2
ωx
2
的圖象的一個對稱中心到最近的對稱軸的距離為π,求f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和是Sn,且Sn=2an-n(n∈N*).
(1)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)記bn=
an+1
anan+1
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有10名教師,其中男教師6名,女教師4名.
(1)要從中選2名教師去參加會議,有多少種不同的選法?
(2)現(xiàn)要從中選出4名教師去參加會議,求男、女教師各選2名的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的二次函數(shù) f(x)=x2+2ax+b2
(I)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述函數(shù)圖象與x軸有公共點的概率;
(Ⅱ)若a是從區(qū)間[0,3]內(nèi)任取的一個實數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個實數(shù),求上述函數(shù)圖象與x軸有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在(-1,1)的函數(shù)f(x)滿足:對任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),當x∈(-1,0)時有f(x)>0.
求證:f(
1
5
)+f(
1
11
)+…+f(
1
n2+3n+1
)
f(
1
2
)

查看答案和解析>>

同步練習冊答案