在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,試判斷三角形的形狀.

解:由正弦定理===2R(R為△ABC外接圓的半徑),將原式化為8R2sin2Bsin2C=8R2sinBsinCcosBcosC.

∵sinBsinC≠0,∴sinBsinC=cosBcosC,即cos(B+C)=0.

∴B+C=90°,A=90°.故△ABC為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2=a2+bc,則A=(  )
A、30°B、45°C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2-a2=-
3
bc
,則A=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若  b2+c2-a2=bc,則A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2+c2-
2
bc=a2,且
a
b
=
2
,則C等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b2=ac,c=2a,則cosB等于( 。

查看答案和解析>>

同步練習(xí)冊答案