【題目】已知函數(shù).
(1)求證:f(x)在(-∞,0)上是增函數(shù);
(2)若,求在上的最值.
【答案】(1)見解析;(2),.
【解析】
(1)運(yùn)用單調(diào)性的定義,經(jīng)過(guò)作差比較可以證明出f(x)在(-∞,0)上是增函數(shù);
(2)判斷出f(x)的奇偶性,利用函數(shù)的奇偶性可以確定f(x)函數(shù)在的單調(diào)性,再利用單調(diào)性的性質(zhì)可以判斷出函數(shù)在上的單調(diào)性,最后利用單調(diào)性可以求出在上的最值.
(1)證明:任取x1,x2∈(-∞,0),且x1<x2,則
∵x1<x2<0,
∴x2-x1>0,x1+x2<0,.
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函數(shù)在(-∞,0)上是增函數(shù).
(2)∵,∴是偶函數(shù).
由(1)可得在上是減函數(shù),∴在上是減函數(shù).
∴,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問(wèn)題:“今有倉(cāng),廣三丈,袤四丈五尺,容粟一萬(wàn)斛,問(wèn)高幾何?”其意思為:“今有一個(gè)長(zhǎng)方體(記為)的糧倉(cāng),寬3丈(即丈),長(zhǎng)4丈5尺,可裝粟一萬(wàn)斛,問(wèn)該糧倉(cāng)的高是多少?”已知1斛粟的體積為2.7立方尺,一丈為10尺,則下列判斷正確的是__________.(填寫所有正確結(jié)論的編號(hào))
①該糧倉(cāng)的高是2丈;
②異面直線與所成角的正弦值為;
③長(zhǎng)方體的外接球的表面積為平方丈.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了調(diào)查高一年級(jí)學(xué)生的體育鍛煉情況,從甲、乙、丙3個(gè)班中,按分層抽樣的方法獲得了部分學(xué)生一周的鍛煉時(shí)間(單位:h),數(shù)據(jù)如下,
甲 | 6 | 6.5 | 7 | 7.5 | 8 | |||
乙 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
丙 | 3 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 |
(1)求三個(gè)班中學(xué)生人數(shù)之比;
(2)估計(jì)這個(gè)學(xué)校高一年級(jí)學(xué)生中,一周的鍛煉時(shí)間超過(guò)10h的百分比;
(3)估計(jì)這個(gè)學(xué)校高一年級(jí)學(xué)生一周的平均鍛煉時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).
(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;
(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服務(wù)電話,打進(jìn)的電話響第1聲時(shí)被接的概率是0.1;響第2聲時(shí)被接的概率是0.2;響第3聲時(shí)被接的概率是0.3;響第4聲時(shí)被接的概率是0.35.
(1)打進(jìn)的電話在響5聲之前被接的概率是多少?
(2)打進(jìn)的電話響4聲而不被接的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),
則的最小值為.
應(yīng)用上述解法,求解下列問(wèn)題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(0,-2),橢圓E: 的離心率為,F是橢圓E的右焦點(diǎn),直線PF的斜率為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3截得的弦長(zhǎng)為3,且與橢圓E交于A、B兩點(diǎn),求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下藥物效果與動(dòng)物試驗(yàn)列聯(lián)表:
患病 | 未患病 | 總計(jì) | |
服用藥 | 10 | 45 | 55 |
沒服用藥 | 20 | 30 | 50 |
總計(jì) | 30 | 75 | 105 |
經(jīng)過(guò)計(jì)算,,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是
臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有97.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
B. 有99%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
C. 有99.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
D. 沒有理由認(rèn)為服藥情況與是否患病之間有關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn), 為橢圓:上異于點(diǎn)A,B的任意一點(diǎn).
(Ⅰ)求證:直線、的斜率之積為-;
(Ⅱ)是否存在過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com