【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設 ,三棱錐的體積 ,求A到平面PBC的距離。

【答案】1)證明見解析 2 到平面的距離為

【解析】試題分析:(1)連結BDAC相交于O,連結OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點,ABx軸,ADy軸,APz軸,建立空間直角坐標系,利用向量法能求出A到平面PBD的距離

試題解析:(I)設BDAC于點O,連結EO。

因為ABCD為矩形,所以OBD的中點。

EPD的中點,所以EO∥PB

EO平面AECPB平面AEC

所以PB∥平面AEC。

II

,可得.

。

由題設易知,所以

,

所以到平面的距離為

2:等體積法

,可得.

由題設易知,BC

假設到平面的距離為d,

又因為PB=

所以

又因為(),

,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求的面積的最大值;

(Ⅲ)設直線 分別與軸交于點, .判斷 大小關系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點.

(1)求線段的長度;

(2) 為坐標原點, 為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷函數(shù)f(x)= 在(﹣1,+∞)上的單調性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,動點

(Ⅰ)求橢圓的標準方程;

(Ⅱ)求以為直徑且被直線截得的弦長為2的圓的方程;

(Ⅲ)設是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,證明:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓, ,且圓心在直線上.

Ⅰ)求此圓的方程

Ⅱ)求與直線垂直且與圓相切的直線方程

若點為圓上任意點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,圖2是某城市1月至8月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級, 一級空氣質量最好,一級和二級都是質量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個

②第二季度與第一季度相比,空氣達標天數(shù)的比重下降了

③8月是空氣質量最好的一個月

④6月份的空氣質量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習冊答案