過(guò)原點(diǎn)且傾斜角為的直線被圓學(xué)所截得的弦長(zhǎng)為
A.B.2C.D.2
D

試題分析:由已知圓x2+y2-4y=0,我們可以將其轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,求出圓心坐標(biāo)和半徑,又直線由過(guò)原點(diǎn)且傾斜角為60°,得到直線的方程,再結(jié)合半徑、半弦長(zhǎng)、弦心距滿足勾股定理,即可求解.將圓x2+y2-4y=0的方程可以轉(zhuǎn)化為: x2+(y-2)2=4,即圓的圓心為A(0,2),半徑為R=2,∴A到直線ON的距離,即弦心距為1,∴ON=,∴弦長(zhǎng)2,故選D.
點(diǎn)評(píng):解決該試題的關(guān)鍵是要求圓到割線的距離,即弦心距,我們最常用的性質(zhì)是:半徑、半弦長(zhǎng)(BE)、弦心距(OE)構(gòu)成直角三角形,滿足勾股定理,求出半徑和半弦長(zhǎng),代入即可求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知以點(diǎn)為圓心的圓與軸交于點(diǎn),與軸交于點(diǎn)、,其中為原點(diǎn).
(1)求證:△的面積為定值;
(2)設(shè)直線與圓交于點(diǎn)、, 若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

:與圓:的位置關(guān)系是(  )
A.相交B.外切C.內(nèi)切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

當(dāng)點(diǎn)P在圓x2+y2=1上變動(dòng)時(shí),它與定點(diǎn)Q (3,0) 相連,線段PQ的中點(diǎn)M的軌跡方程是(  )
A.(x+3)2+y2=4B.(x-3)2+y2=1
C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓C1,圓C2與圓C1關(guān)于直線對(duì)稱(chēng),
則圓C2的方程為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知圓C1的方程為(x-2)2+(y-1)2=,橢圓C2的方程為,C2的離心率為,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,試求:
(1)直線AB的方程;(2)橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)P(1,1)為圓的弦MN的中點(diǎn),則弦MN所在直線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,點(diǎn),直線
⑴求與圓相切,且與直線垂直的直線方程;
⑵若在直線上(為坐標(biāo)原點(diǎn))存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任意一點(diǎn),都有為一常數(shù),求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以(5,6)和(3,-4)為直徑端點(diǎn)的圓的方程是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案