1.在一個平面上,機器人甲到與點C(2,-3)距離為5的地方繞C點順時針而行,在行進過程中保持與點C的距離不變,機器人乙在過點A(-8,0)與B(0,6)的直線上行進,機器人甲與機器人乙的最近距離是( 。
A.$\frac{67}{5}$B.$\frac{52}{5}$C.$\frac{42}{5}$D.$\frac{17}{5}$

分析 由題意可得機器人機器人甲的運行軌跡為(x-2)2+(y+3)2=25,機器人乙的運行軌跡為直線AB的方程為3x+4y-24=0,求出圓心到直線的距離,即可求出答案.

解答 解:∵機器人到與點C (2,-3)距離為5的地方繞C點順時針而行,在行進過程中保持與點C的距離不變,
∴機器人甲的運行軌跡為(x-2)2+(y+3)2=25,
∵A(-8,0),B(0,6)
∴機器人乙的運行軌跡為直線AB的方程為3x+4y-24=0,
機器人甲與機器人乙的最近距離即則圓心C到直線AB的距離為d=$\frac{|2×3-4×3-24|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{42}{5}$,
故選:C.

點評 本題考查了直線和圓的位置關(guān)系,以及點到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.含有參數(shù)形式的復(fù)數(shù)如:3m+9+(m2+5m+6)i,(m∈R)何時表示實數(shù)、虛數(shù)、純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為f(x) 的極值點的必要不充分條件.(填充分不必要,必要不充分,充要條件或既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若非零不共線向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow$|,則下列結(jié)論正確的個數(shù)是|.( 。
①向量$\overrightarrow{a}$,$\overrightarrow$的夾角恒為銳角  ②2|$\overrightarrow$|2>$\overrightarrow{a}$•$\overrightarrow$  ③|2$\overrightarrow$|>|$\overrightarrow{a}$-2$\overrightarrow$|④|2$\overrightarrow{a}$|>|2$\overrightarrow{a}$-$\overrightarrow$|.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,則角A=( 。
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2x-1,集合A={x|1≤x≤2}.
(1)記函數(shù)f(x)在A上的值域為C,若函數(shù)G(x)=x2+2x+t,x∈[0,1]的值域為B,且C∪B=B,求實數(shù)t的取值范圍;
(2)若?x∈A,[f(log2x)]2+2af(log2x)+a>-5恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線y=ax+b通過第一、二、四象限,則圓(x+a)2+(y+b)2=1的圓心位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù).對于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x) 均是以T為周期的函數(shù);
 ②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù),
下列判斷正確的是(  )
A.①和②均為真命題B.①和②均為假命題
C.①為真命題,②為假命題D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點分別為F1,F(xiàn)2,點A為雙曲線Γ的左頂點,點M(x1,y1)(x1>0,y1>0)為雙曲線Γ漸近線上的一點,且$\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow 0,\overrightarrow{OM},\overrightarrow{ON}$均為焦距的一半,若$∠MAN=\frac{2π}{3}$,則雙曲線Γ的漸近線為( 。
A.$y=±\frac{{2\sqrt{3}}}{3}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.$y=±\frac{{2\sqrt{5}}}{5}x$

查看答案和解析>>

同步練習(xí)冊答案