已知雙曲線
x2
2
-
y2
a
=1
的一條漸近線為y=
2
x
,則實數(shù)a的值為( 。
A、
2
B、2
C、
3
D、4
分析:求出雙曲線
x2
2
-
y2
a
=1
的漸近線和y=
2
x
相比較可求出實數(shù)a的值.
解答:解:∵雙曲線
x2
2
-
y2
a
=1
的漸近線為y= ±
2a
2
x
,
2a
2
=
2
,
解得a=4,
故選4.
點評:本題考查雙曲線的漸近線,比較簡單.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別是F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在雙曲線上、則
PF1
PF2
=( 。
A、-12B、-2C、0D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1,F(xiàn)2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x22
-y2=1
,過點P(0,1)作斜率k<0的直線l與雙曲線恰有一個交點.
(1)求直線l的方程;
(2)若點M在直線l與x≥0,y≥0所圍成的三角形的三條邊上及三角形內運動,求z=-x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
2
=1
的準線過橢圓
x2
4
+
y2
b2
=1
的焦點,且直線y=kx+2與橢圓在第一象限至多只有一個交點,則實數(shù)k的取值范圍為
(-∞,1]∪[-
1
2
,+∞)
(-∞,1]∪[-
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
的夾角大小為( 。

查看答案和解析>>

同步練習冊答案