18.化簡:$\frac{tan(-15{0}^{°})cos(-21{0}^{°})cos(-42{0}^{°})tan(-60{0}^{°})}{sin(-105{0}^{°})}$.

分析 由誘導(dǎo)公式分別化簡分子和分母,代入計算可得.

解答 解:由三角函數(shù)公式化簡可得:
tan(-150°)cos(-210°)cos(-420°)tan(-600°)
=tan(-180°+30°)cos(-180°-30°)cos(-450°+30°)tan(-540°-60°)
=tan30°(-cos30°)(-sin30°)(-tan60°)
=-$\frac{\sqrt{3}}{3}$×$\frac{\sqrt{3}}{2}$×$\frac{1}{2}$×$\sqrt{3}$=-$\frac{\sqrt{3}}{4}$
sin(-1050°)=sin(-1080°+30°)=sin30°=$\frac{1}{2}$
∴原式=$\frac{-\frac{\sqrt{3}}{4}}{\frac{1}{2}}$=-$\frac{\sqrt{3}}{2}$.

點評 本題考查三角函數(shù)的化簡求值,涉及誘導(dǎo)公式和特殊角的三角函數(shù),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將兩直角邊長分別為5和12的直角三角板的一條直角邊對接成三棱錐A′-BCD,使A′C與BD成60°角,求體積VA′-BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若θ∈($\frac{π}{2}$,$\frac{5π}{4}$).則sinθ的取值范圍是(-$\frac{\sqrt{2}}{2}$,1),cosθ的取值范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)全集U={x|-6<x<6},集合A={x|-1<x≤2},集合B={x|0<x<3},求A∩B,A∪B,∁U(A∩B),∁U(A∪B),∁UA∩∁UB.∁UA∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\frac{{e}^{x}+lo{g}_{a}x}{cosx}$(a>0,a≠1),f′(π)=-eπ-$\frac{1}{π}$,則a=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角,$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),則下列函數(shù)中是奇函數(shù)的是②④,是偶函數(shù)的是①③(填序號).
①y=f(|x|);②y=f(-x);③y=x•f(x);④y=f(x)+x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求作函數(shù)y=-2cosx+3在一個周期內(nèi)的圖象,并求函數(shù)y最大值及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b,c∈R,那么“a-2b+c=0”是“a,b,c成等差數(shù)列”( 。
A.充分不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案