20.如圖,點(diǎn)M,N分別是正方體ABCD-A1B1C1D1的棱BC,CC1的中點(diǎn),則異面直線B1D1和MN所成的角是( 。
A.30°B.45°C.60°D.90°

分析 :以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線B1D1和MN所成的角.

解答 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,
則B1(2,2,2),D1(0,0,2),M(1,2,0),N(0,2,1),
$\overrightarrow{{B}_{1}{D}_{1}}$=(-2,-2,0),$\overrightarrow{MN}$=(-1,0,1),
設(shè)異面直線B1D1和MN所成的角為θ,
則cosθ=$\frac{|\overrightarrow{{B}_{1}{D}_{1}}•\overrightarrow{MN}|}{|\overrightarrow{{B}_{1}{D}_{1}}|•|\overrightarrow{MN}|}$=$\frac{2}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=60°.
∴異面直線B1D1和MN所成的角是60°.
故選:C.

點(diǎn)評(píng) 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|x2-5x+4=0},B={x|ax-1=0},若B⊆A,則實(shí)數(shù)a=0或$\frac{1}{4}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)的定義域不是R的是( 。
A.y=x+1B.y=x2C.y=$\frac{1}{x}$D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合A={x|2x2-3x-2=0},集合B={x|x>1},則A∩(∁UB)=(  )
A.{2}B.{x|x≤1}C.{-$\frac{1}{2}$}D.{x|x≤1或x=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線C:y2=2px(p>0)上一點(diǎn)A(4,m)到其焦點(diǎn)的距離為$\frac{17}{4}$,則p的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列等式:
12=1
32=2+3+4
52=3+4+5+6+7
72=4+5+6+7+8+9+10
92=5+6+7+8+9+10+11+12+13

n2=100+101+102+…+m
則n+m=497.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求證:(ac+bd)2≤(a2+b2)(c2+d2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是②.
①BC∥面PDF;
②面PDF⊥面ABC;
③DF⊥面PAE;
④面PAE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲將要參加某決賽,賽前A,B,C,D四位同學(xué)對(duì)冠軍得主進(jìn)行競(jìng)猜,每人選擇一名選手,已知A,B選擇甲的概率均為m,C,D選擇甲的概率均為n(m>n),且四人同時(shí)選擇甲的概率為$\frac{9}{100}$,四人均未選擇甲的概率為$\frac{1}{25}$.
(1)求m,n的值;
(2)設(shè)四位同學(xué)中選擇甲的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案