15.已知拋物線C:y2=2px(p>0)上一點A(4,m)到其焦點的距離為$\frac{17}{4}$,則p的值是$\frac{1}{2}$.

分析 通過點A(4,m)到其焦點的距離為$\frac{17}{4}$,利用拋物線的定義,求解即可.

解答 解:∵拋物線方程為y2=2px,
∴拋物線焦點為F($\frac{p}{2}$,0),準(zhǔn)線方程為x=-$\frac{p}{2}$,
又∵點A(4,m)到其焦點的距離為$\frac{17}{4}$,
∴根據(jù)拋物線的定義,得4+$\frac{p}{2}$=$\frac{17}{4}$,
∴p=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題給出一個特殊的拋物線,在已知其上一點到焦點距離的情況下,求準(zhǔn)線方程.著重考查了拋物線的定義和標(biāo)準(zhǔn)方程,以及拋物線的基本概念,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且$\frac{S_n}{T_n}$=$\frac{3n-1}{2n+3}$,則$\frac{a_7}{b_7}$=( 。
A.$\frac{20}{17}$B.$\frac{38}{29}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=2sin(2x+$\frac{π}{3}}$),g(x)=mcos(2x-$\frac{π}{6}}$)-2m+3>0,m>0,對任意x1∈[0,$\frac{π}{4}}$],存在x2∈[0,$\frac{π}{4}}$],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是$[{1,\frac{4}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|y=lg(x-1)},B={y|y2-2y-3≤0},則A∩B=( 。
A.(1,3)B.[1,3)C.[1,3]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=e1+|x|-$\frac{1}{{1+{x^4}}}$,則使得f(2x)<f(1-x)成立的x的取值范圍是( 。
A.$(-1,\frac{1}{3})$B.$(-∞,\frac{1}{3})$C.(-∞,-1)D.$(-\frac{1}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,點M,N分別是正方體ABCD-A1B1C1D1的棱BC,CC1的中點,則異面直線B1D1和MN所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,sinB+sinC=$\frac{1}{R}$(其中R為△ABC的外接圓的半徑)且△ABC的面積S=a2-(b-c)2
(1)求tanA的值;
(2)求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)U=R,A={x|x<2},B={x|x>m},若∁UA⊆B,則實數(shù)m的取值范圍是(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.與函數(shù)y=x(x≥0)相等的函數(shù)是( 。
A.y=$\sqrt{{x}^{2}}$B.y=$\root{3}{{x}^{3}}$C.y=($\sqrt{x}$)2D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

同步練習(xí)冊答案