分析 由nan+1=(n+1)an+n(n+1),變形為$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,利用等差數列的通項公式可得:$\frac{{a}_{n}}{n}$,可得an.由bn=ancos$\frac{2nπ}{3}$=${n}^{2}cos\frac{2nπ}{3}$,對n分類討論利用三角函數的周期性即可得出.
解答 解:∵nan+1=(n+1)an+n(n+1),
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
∴數列$\{\frac{{a}_{n}}{n}\}$成等差數列,首項為1,公差為1.
∴$\frac{{a}_{n}}{n}$=1+(n-1)=n,
可得an=n2.
∴bn=ancos$\frac{2nπ}{3}$=${n}^{2}cos\frac{2nπ}{3}$,
∴b3k-2=$(3k-2)^{2}cos\frac{2(3k-2)π}{3}$=$-\frac{1}{2}(3k-2)^{2}$,
b3k-1=(3k-1)2$cos\frac{2(3k-1)π}{3}$=-$\frac{1}{2}(3k-1)^{2}$,
b3k=(3k)2$cos\frac{2×3kπ}{3}$=(3k)2,k∈N*.
∴b3k-2+b3k-1+b3k=$-\frac{1}{2}(3k-2)^{2}$-$\frac{1}{2}(3k-1)^{2}$+(3k)2=9k-$\frac{5}{2}$,
則S120=9×(1+2+…+40)-$\frac{5}{2}×40$
=7280.
故答案為:7280.
點評 本題考查了等差數列的通項公式、遞推關系、三角函數的周期性,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | sin(arcsin$\frac{π}{3}$)=$\frac{π}{3}$ | B. | sin(arcsin$\frac{3}{π}$)=$\frac{3}{π}$ | ||
C. | arccos(-x)=arccosx | D. | arctan(tan$\frac{2π}{3}$)=$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2π}{5}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{5}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1601 | B. | -1801 | C. | -2001 | D. | -2201 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com