已知
a
=(x,2,0),
b
=(3,2-x,x2),且
a
b
的夾角為鈍角,則實(shí)數(shù)x的取值范圍是( 。
A、x>4B、x<-4
C、0<x<4D、-4<x<0
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專(zhuān)題:空間向量及應(yīng)用
分析:運(yùn)用數(shù)量積公式求出向量a,b的數(shù)量積,再求向量a,b共線(xiàn)的情況,由于
a
=(x,2,0),
b
=(3,2-x,x2),且
a
b
的夾角為鈍角,則
a
b
<0,解不等式即可得到范圍.
解答: 解:若
a
=(x,2,0),
b
=(3,2-x,x2),則
a
b
=3x+2(2-x)+0=4+x,
a
b
的夾角為鈍角,兩個(gè)向量不共線(xiàn),
則4+x<0,解得,x<-4.
實(shí)數(shù)x的取值范圍是:(-∞,-4).
故選:B.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的運(yùn)用,考查向量的夾角為鈍角的條件,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為10:8:7,按分層抽樣從中抽取200名學(xué)生作為樣本,若每人被抽到的概率是0.2,則該校高三年級(jí)的總?cè)藬?shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
2
sin
x
2
-
6
cos
x
2
的結(jié)果是( 。
A、2
2
sin(
x
2
+
π
6
B、-2
2
cos(
x
2
+
π
6
C、2
2
cos(
x
2
+
π
3
D、2
2
sin(
x
2
-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
m
-
y2
n
=1(mn≠0)有一個(gè)焦點(diǎn)與拋物線(xiàn)y2=4x的焦點(diǎn)重合,則m+n的值為(  )
A、3B、2C、1D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(1,0),
b
=(
1
2
,
1
2
),則下列結(jié)論中正確的是( 。
A、|
a
|=|
b
|
B、
a
b
C、
a
-
b
b
垂直
D、
a
b
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知空間四邊形ABCD,連結(jié)AC,BD,E,F(xiàn),G分別是BC,CD,DB的中點(diǎn),請(qǐng)化簡(jiǎn):
(1)
A
B+
B
C+
C
D

(2)
A
B+
G
D+
E
C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C的對(duì)稱(chēng)軸是坐標(biāo)軸,M(1,-2)是C上的一點(diǎn),且直線(xiàn)x-2y-5=0和C的漸近線(xiàn)之一平行,則雙曲線(xiàn)C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列程序運(yùn)行的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案