曲線C的極坐標(biāo)方程為,以極點O為原點,極軸Ox為x的非負(fù)半軸,保持單位長度不變建立直角坐標(biāo)系xoy.

(1)求曲線C的直角坐標(biāo)方程;

(2)直線l的參數(shù)方程為 .若C與的交點為P,求點P與點A(-2,0)的距離|PA|.

 

(1);(2).

【解析】

試題分析:(1)將曲線C的極坐標(biāo)方程為,變形為:,然后將極坐標(biāo)與直角坐標(biāo)的互化公式代入即得曲線C的普通方程;(2)由直線參數(shù)方程中參數(shù)的幾何意義可知:|PA|=,所以只需將直線l的參數(shù)方程代入曲線C的普通方程中求出t值即得.

試題解析:(1)因為,又因為,所以曲線C化為直角坐標(biāo)為:, 3分

(2)將代入C得:解得:,所以|PA|= 7分

解法2(不用幾何意義)都化為直角坐標(biāo)方程的普通方程后,求出交點,再用兩點間距離公式.

考點:1.極坐標(biāo)與直角坐標(biāo)互化;2.直線參數(shù)方程.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期末考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

雙曲線的漸近線方程是

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省晉江市高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

)n展開式中只有第六項的二項式系數(shù)最大,則展開式的常數(shù)項是( )

A.360 B.180 C.90 D.45

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省晉江市高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)有兩個零點,則有

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省晉江市高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:選擇題

在下列圖象中,二次函數(shù)與指數(shù)函數(shù)的圖象只可能是( )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省等三校高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

小王經(jīng)營一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個現(xiàn)烤面包可獲利10元,若當(dāng)天賣不完,則未賣出的現(xiàn)烤面包因過期每個虧損5元.經(jīng)統(tǒng)計,得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個數(shù)及天數(shù)如下表:

售出個數(shù)

10

11

12

13

14

15

天數(shù)

3

3

3

6

9

6

試依據(jù)以頻率估計概率的統(tǒng)計思想,解答下列問題:

(1)計算小王某天售出該現(xiàn)烤面包超過13個的概率;

(2)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個的天數(shù)大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.

(3)若小王每天訂購14個該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省等三校高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:填空題

矩陣的特征值為______________.來源

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省四地六校高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)表示不超過的最大整數(shù),如.我們發(fā)現(xiàn):

;

;

.......

通過合情推理,寫出一般性的結(jié)論 (用含的式子表示)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)處取得極值為

(1)求的值;(2)若有極大值28,求上的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案