【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

【答案】1)當(dāng)時(shí),單調(diào)遞減.,

當(dāng)時(shí), 單調(diào)遞減,在單調(diào)遞增.

2)證明見(jiàn)解析.

【解析】分析:(1)首先確定函數(shù)的定義域,之后對(duì)函數(shù)求導(dǎo),之后對(duì)進(jìn)行分類(lèi)討論,從而確定出導(dǎo)數(shù)在相應(yīng)區(qū)間上的符號(hào),從而求得函數(shù)對(duì)應(yīng)的單調(diào)區(qū)間;

(2)根據(jù)存在兩個(gè)極值點(diǎn),結(jié)合第一問(wèn)的結(jié)論,可以確定,得到兩個(gè)極值點(diǎn)是方程的兩個(gè)不等的正實(shí)根,利用韋達(dá)定理將其轉(zhuǎn)換,構(gòu)造新函數(shù)證得結(jié)果.

詳解:(1)的定義域?yàn)?/span>,.

(i)若,則,當(dāng)且僅當(dāng),時(shí),所以單調(diào)遞減.

(ii)若,令得,.

當(dāng)時(shí),

當(dāng)時(shí),.所以單調(diào)遞減,在單調(diào)遞增.

(2)由(1)知,存在兩個(gè)極值點(diǎn)當(dāng)且僅當(dāng).

由于的兩個(gè)極值點(diǎn)滿足,所以,不妨設(shè),則.由于

,

所以等價(jià)于.

設(shè)函數(shù),由(1)知,單調(diào)遞減,又,從而當(dāng)時(shí),.

所以,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹(shù),求該株茶樹(shù)恰好種在圭田內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且sin(α+β)=3sin(α-β).

(1)若tanα=2,求tanβ的值;

(2)求tan(α-β)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷上的單調(diào)性并證明;

2)若對(duì)任意,不等式恒成立,求的取值范圍;

3)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分?jǐn)?shù)據(jù)如下表:

(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預(yù)測(cè)該地區(qū) 2018年的糧食產(chǎn)量.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,

1)當(dāng)時(shí),求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)設(shè)a>b>0,試比較的大。

2)若關(guān)于x的不等式(2x1)2<ax2的解集中整數(shù)恰好有3個(gè),求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰(shuí)抓到最后一個(gè)球贏.如果甲先抓,那么下列推斷正確的是_____________.(填寫(xiě)序號(hào))

①若,則甲有必贏的策略; ②若,則乙有必贏的策略;

③若,則甲有必贏的策略; ④若,則乙有必贏的策略.

查看答案和解析>>

同步練習(xí)冊(cè)答案