觀察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,這些等式反映了自然數(shù)間的某種規(guī)律,設(shè)n表示自然數(shù),用關(guān)于n的等式表示為       .

解析考點(diǎn):歸納推理.
分析:根據(jù)已知中各式9-1=8,16-4=12,25-9=16,36-16=20…,分析等式兩邊的數(shù)的變化規(guī)律,發(fā)現(xiàn)等號前為一個平方差的形式,右邊是4的整數(shù)倍,歸納總結(jié)后,即可得到結(jié)論.
解:觀察下列各式
9-1=32-12=8=4×(1+1),
16-4=42-22=12=4×(1+2),
25-9=52-32=16=4×(1+3),
36-16=62-42=20=4×(1+4),
,…,
分析等式兩邊數(shù)的變化規(guī)律,我們可以推斷
(n+2)2-n2=4(n+1)(n∈N?
故答案為:(n+2)2-n2=4(n+1)(n∈N?

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)列為等差數(shù)列,若,,則.類比上述結(jié)論,對于等比數(shù)列,若,則可以得到=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列式子:,,,… ,根據(jù)以上式子可以猜想:_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

對大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3  32=1+3+5   42=1+3+5+7
23=3+5  33=7+9+11   43=13+15+17+19
根據(jù)上述分解規(guī)律,則52=__________________;
若m3(m∈N*)的分解中最小的數(shù)是21,則m的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

用反證法證明命題“如果那么”時,假設(shè)的內(nèi)容應(yīng)為__________   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,數(shù)表滿足;(1)第行首尾兩數(shù)均為;(2)表中遞推關(guān)系類似楊輝三角(即每一數(shù)是其上方相鄰兩數(shù)之和),記第行第2個數(shù).根據(jù)表中上下兩行數(shù)據(jù)關(guān)系,可以求得當(dāng)時,          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在算式“”中的△,〇中,分別填入兩個正整數(shù),使它們的倒數(shù)和最小,則這兩個數(shù)構(gòu)成的數(shù)對(△,〇)應(yīng)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

.對于各數(shù)互不相等的整數(shù)數(shù)組 (是不小于3的正整數(shù)),對于任意的,當(dāng)時有,則稱,是該數(shù)組的一個“逆序”,一個數(shù)組中所有“逆序”的個數(shù)稱為該數(shù)組的“逆序數(shù)”,則數(shù)組(2,4,3,1)中的逆序數(shù)等于      ;若數(shù)組中的逆序數(shù)為,則數(shù)組中的逆序數(shù)為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

觀察下列等式
    
   由以上等式推測到一個一般的結(jié)論:
對于                                       

查看答案和解析>>

同步練習(xí)冊答案