分析 (1)由函數(shù)圖象觀察可知A,函數(shù)的周期T=2($\frac{2π}{3}$-$\frac{π}{6}$)=π,由周期公式可得ω,由點(diǎn)($\frac{π}{6}$,2)在函數(shù)圖象上,可得:2sin(2×$\frac{π}{6}$+φ)=2,解得φ=kπ+$\frac{π}{6}$,k∈Z結(jié)合范圍|φ|≤$\frac{π}{2}$,即可求得φ的值.
(2)根據(jù)正弦函數(shù)的單調(diào)遞減區(qū)間為[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z,列出關(guān)于x的不等式,求出不等式的解集即可得到f(x)的單調(diào)遞減區(qū)間;
(3)由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)求出此時(shí)正弦函數(shù)的值域,即可確定出f(x)的最小值與最大值,以及取得最值時(shí)x的值.
解答 解:(1)由函數(shù)圖象觀察可知:A=1,…(1分),
函數(shù)的周期T=2($\frac{2π}{3}-\frac{π}{6}$)=π,由周期公式可得:ω=$\frac{2π}{π}$=2…(2分)
由點(diǎn)($\frac{π}{6}$,1)在函數(shù)圖象上,可得:sin(2×$\frac{π}{6}$+φ)=1,可得:φ=kπ+$\frac{π}{6}$,k∈Z
∵|φ|≤$\frac{π}{2}$,
∴φ=$\frac{π}{6}$…(4分)
函數(shù)f(x)的解析式為:f(x)=sin(2x+$\frac{π}{6}$).
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
則f(x)的單調(diào)減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;…(6分)
(3)∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],
∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,
則當(dāng)x=-$\frac{π}{6}$時(shí),f(x)取得最小值-$\frac{1}{2}$;當(dāng)x=$\frac{π}{6}$時(shí),f(x)取得最大值1.…(10分)
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了二倍角的余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及正弦函數(shù)的單調(diào)性,熟練掌握公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A={0,8} | B. | A∪B={0,2,4,6,8} | C. | ∁SA∩∁SB={6} | D. | ∁SA∪∁SB={6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在[0,1]上單調(diào)遞增 | B. | f(x)在[0,1]上單調(diào)遞減 | ||
C. | f(x+3)一定是偶函數(shù) | D. | f(x+3)一定是奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2)∪(2,+∞) | B. | (-∞,-2)∪(-2,+∞) | C. | (-∞,2)和(2,+∞) | D. | (-∞,-2)和(-2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com