15.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,4),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.5B.-5C.10D.-10

分析 首先利用向量平行得到x,然后利用數(shù)量積的坐標運算得到所求.

解答 解:因為向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,4),且$\overrightarrow{a}$∥$\overrightarrow$,所以4+2x=0,解得x=-2,故$\overrightarrow{a}$•$\overrightarrow$=-2-(-2)×4=-10;
故選:D.

點評 本題考查了平面向量平行的坐標性質(zhì)以及數(shù)量積的坐標運算;屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.對某種燈泡中隨機地抽取200個樣品進行使用壽命調(diào)查,結(jié)果如下:
壽命(天)頻數(shù)頻率
[100,200)200.10
[200,300)30y
[300,400)700.35
[400,500)x0.15
[500,600)500.25
合計2001
規(guī)定:使用壽命大于或等于500天的燈泡是優(yōu)等品,小于300天是次品,其余的是正品.某人從燈泡樣品中隨機地購買了n(n∈N*)個,如果這n個燈泡的等級分布情況恰好與從這200個樣品中按三個等級分層抽樣所得的結(jié)果相同,則n的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(2015)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知點C的坐標為(0,1),A,B是拋物線y=x2上不同于原點O的相異的兩個動點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0.
(1)求證:$\overrightarrow{AC}$∥$\overrightarrow{BC}$;
(2)若$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R),且$\overrightarrow{OM}$•$\overrightarrow{AB}$=0,試求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上一點,直線OA的斜率為$\sqrt{2}$(O為坐標原點),且A到F的距離為3,則p=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=f(x)(x∈(0,3))圖象如圖所示,若0<x1<x2<3,則有( 。
A.$\frac{f({x}_{1})}{{x}_{1}}$<$\frac{f({x}_{2})}{{x}_{2}}$B.$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$
C.$\frac{f({x}_{1})}{{x}_{1}}$>$\frac{f({x}_{2})}{{x}_{2}}$D.前三個判斷都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,某市三個新興工業(yè)小區(qū)A,B,C決定平均投資共同建一個中心醫(yī)院O,使得醫(yī)院到三個小區(qū)的距離相等,已知這三個小區(qū)之間的距離分別為AB=4.3km,BC=3.7km,CA=4.7km,該醫(yī)院應(yīng)建在何處(精確到0.1km或1°)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知不等式$\frac{mx+1}{mx-1}$>0的解為{x|x<-1或x>1},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.用適當?shù)姆椒ū硎鞠铝屑希?br />(1)絕對值等于5的全體實數(shù)組成的集合;
(2)所有正方形組成的集合;
(3)除以3余1的所有整數(shù)組成的集合;
(4)構(gòu)成英文單詞mathematics(數(shù)學)的全部字母.

查看答案和解析>>

同步練習冊答案