7.定義在R上的函數(shù)f(x)滿足f(x)+f′(x)<e,f(0)=e+2(其中e為自然對(duì)數(shù)的底數(shù)),則不等式exf(x)>ex+1+2的解集為( 。
A.(-∞,0)B.(-∞,e+2)C.(-∞,0)∪(e+2,+∞)D.(0,+∞)

分析 構(gòu)造函數(shù)g(x)=exf(x)-ex+1-2(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.

解答 解:設(shè)g(x)=exf(x)-ex+1-2(x∈R),
則g′(x)=exf(x)+exf′(x)-ex+1=ex[f(x)+f′(x)-e],
∵f(x)+f′(x)<e,
∴f(x)+f′(x)-e<0,
∴g′(x)<0,
∴y=g(x)在定義域上單調(diào)遞減,
∵f(0)=e+2,
∴g(0)=e0f(0)-e-2=e+2-e-2=0,
∴g(x)>g(0),
∴x<0,
∴不等式的解集為(-∞,0)
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)正實(shí)數(shù)x,y,z,w滿足2012x2=2013y2=2014z2=2015w2,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$+$\frac{1}{w}$=1,試求$\sqrt{2012x+2013y+2014z+2015w}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知點(diǎn)F為拋物線E:y2=4x的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,則|AF|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.拋物線C:y=ax2的準(zhǔn)線方程為y=-$\frac{1}{4}$,則其焦點(diǎn)坐標(biāo)為(0,$\frac{1}{4}$),實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M到準(zhǔn)線l的距離為d,則d+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)M=($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( 。
A.[0,$\frac{1}{8}$)B.[$\frac{1}{8}$,1)C.[1,8)D.[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)=sin(ωx+φ-$\frac{π}{4}$)(ω>0,0<φ<$\frac{π}{2}$)為奇函數(shù),且y=f(x)的圖象與x軸的兩個(gè)相鄰交點(diǎn)之間的距離為π,設(shè)矩形區(qū)域Ω是由直線x=±$\frac{π}{2}$和y=±1所圍成的平面圖形,區(qū)域D是由函數(shù)y=f(x+$\frac{π}{2}$)、x=±$\frac{π}{2}$及y=-1所圍成的平面圖形,向區(qū)域Ω內(nèi)隨機(jī)地拋擲一粒豆子,則該豆子落在區(qū)域D的概率是$\frac{π+2}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.平面直角坐標(biāo)系中,已知直線l:x=4,定點(diǎn)F(1,0),動(dòng)點(diǎn)P(x,y)到直線l的距離是到定點(diǎn)F的距離的2倍.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若M為軌跡C上的動(dòng)點(diǎn),直線m過(guò)點(diǎn)M且與軌跡C只有一個(gè)公共點(diǎn),求證:此時(shí)點(diǎn)E(-1,0)和點(diǎn)F(1,0)到直線m的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A、B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的方程是( 。
A.$\frac{2{x}^{2}}{11}$+2y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案