精英家教網 > 高中數學 > 題目詳情

如圖,已知點M在菱形ABCDBC邊上,連結AMBD于點E,過菱形ABCD的頂點CCNAM,分別交BD、AD于點F、N,連結AF、CE.判斷四邊形AECF的形狀,并說明理由.

四邊形AECF是菱形 

解析試題分析:四邊形AECF是菱形,                                             …2分
理由如下:連接AC,設AC與BD交于點O,
因為作CNAM,所以AECF,所以,
因為ABCD是菱形,所以
所以,所以,
所以四邊形一組對邊平行且相等,所以四邊形是平行四邊形;
又因為該平行四邊形對角線互相垂直平分,所以四邊形是菱形.            …10分
考點:本小題主要考查平面圖形形狀的判斷,考查學生利用平面幾何知識解決問題的能力.
點評:解決此類問題的關鍵是靈活運用平面幾何中的性質和定理,適當轉化.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知:如圖,點上,,平分,交于點.求證:為等腰直角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形是圓內接四邊形,延長與的延長線交于點,且, .

(1)求證:;
(2)當時,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,已知是圓的直徑,是弦,,垂足為平分。

(1)求證:直線與圓的相切;
(2)求證:。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知為銳角△的內心,且,點為內切圓與邊的切點,過點作直線的垂線,垂足為

(1)求證:;
(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.

求證:(1);
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,的外接圓的切線的延長線交于點,的平分線與交于點D.

(1)求證:
(2)若的外接圓的直徑,且,=1.求長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
如圖,⊙O內切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G。

(1)求證:圓心O在直線AD上;
(2)求證:點C是線段GD的中點。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(選修4-1:幾何證明選講)
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE•BF=BC•BD

查看答案和解析>>

同步練習冊答案