19.設(shè)F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( 。
A.$\frac{7}{16}$B.$\frac{25}{16}$C.-$\frac{7}{16}$D.-$\frac{25}{16}$

分析 設(shè)|PF2|=m,則|PF1|=2m,由橢圓的定義可得:|PF1|+|PF2|=3m=4,解得m,c=$\sqrt{{2}^{2}-{1}^{2}}$,由余弦定理可得:cos∠F1PF2=$\frac{{m}^{2}+(2m)^{2}-(2c)^{2}}{2×m×2m}$,即可得出.

解答 解:設(shè)|PF2|=m,則|PF1|=2m,由橢圓的定義可得:|PF1|+|PF2|=3m=4,解得m=$\frac{4}{3}$,c=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
由余弦定理可得:cos∠F1PF2=$\frac{{m}^{2}+(2m)^{2}-(2c)^{2}}{2×m×2m}$=$\frac{5×(\frac{4}{3})^{2}-4×3}{4×(\frac{4}{3})^{2}}$=-$\frac{7}{16}$,
故選:C.

點評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的內(nèi)角,A,B,C對邊的邊長分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(1)求$\frac{tanA}{tanB}$的值;
(2)求tan(A-B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{bn}是首項為-$\frac{3}{4}$,公比為$\frac{1}{2}$的等比數(shù)列,數(shù)列{an}滿足an+1+bn=n-1,記Sn、Tn分別為數(shù)列{an}、{bn}的前n項和,若數(shù)列{$\frac{{S}_{n}}{n}$+λ•$\frac{{T}_{n}}{n}$}為等差數(shù)列,則λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知{an}是等差數(shù)列,a10=20,其前10項和S10=110,則其公差d等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如如,在三棱錐A-BCD中,AB=AD,BC⊥CD,平面ABD⊥平面BCD,點E,F(xiàn)分別是BD,CD的中點.
(1)求證:CD⊥平面AEF;
(2)已知AB=4,BC=2,CD=2$\sqrt{3}$,求三棱錐B-AEF的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{m}{1+i}$+$\frac{1+i}{2}$是實數(shù),則實數(shù)m=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b>0,且滿足a+4b=1,$\frac{1}{a}$+$\frac{1}$的最小值為n,則二項式(x-$\frac{1}{{2\sqrt{x}}}$)n的展開式的常數(shù)項為( 。
A.$\frac{8}{9}$B.-$\frac{6}{7}$C.$\frac{21}{16}$D.$\frac{22}{31}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果橢圓$\frac{y^2}{36}$+$\frac{x^2}{9}$=1的某條弦被點(2,4)平分,則這條弦所在的直線方程是2x+y-8=0(請寫出一般式方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)是周期為6的偶函數(shù),且當(dāng)x∈[0,3]時f(x)=3x,則f(2015)=( 。
A.6B.3C.0D.-6

查看答案和解析>>

同步練習(xí)冊答案