【題目】某校在高二年級(jí)學(xué)生中,對(duì)自然科學(xué)類、社會(huì)科學(xué)類校本選修課程的選課意向進(jìn)行調(diào)查.現(xiàn)從高二年級(jí)學(xué)生中隨機(jī)抽取180名學(xué)生,其中男生105名;在這180名學(xué)生中選擇社會(huì)科學(xué)類的男生、女生均為45.

(1)根據(jù)抽取的180名學(xué)生的調(diào)查結(jié)果,完成下面的2×2列聯(lián)表.

(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為科類的選擇與性別有關(guān)?

選擇自然科學(xué)類

選擇社會(huì)科學(xué)類

合計(jì)

男生

女生

合計(jì)

參考公式:,其中.

P(K2k0)

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)見解析(2)能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為科類的選擇與性別有關(guān).

【解析】

1)根據(jù)題意計(jì)算男、女生選修社會(huì)科學(xué)類與自然科學(xué)類的人數(shù),填寫列聯(lián)表即可;
2)計(jì)算K 2,對(duì)照臨界值得出結(jié)論.

解:(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù),可得2×2列聯(lián)表如下:

選擇自然科學(xué)類

選擇社會(huì)科學(xué)類

合計(jì)

男生

60

45

105

女生

30

45

75

合計(jì)

90

90

180

(2)K2的觀測(cè)值為

所以能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為科類的選擇與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形中,,,,中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).

(Ⅰ)證明:;

(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年學(xué)雷鋒日,某中學(xué)計(jì)劃從高中三個(gè)年級(jí)選派4名教師和若干名學(xué)生去當(dāng)學(xué)雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個(gè)年級(jí)的相關(guān)人員中抽取若干人組成文明交通宣傳小組,學(xué)生的選派情況如下:

年級(jí)

相關(guān)人數(shù)

抽取人數(shù)

高一

99

高二

27

高三

18

2

(Ⅰ)求,的值;

(Ⅱ)若從選派的高一、高二、高三年級(jí)學(xué)生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級(jí)學(xué)生的概率;

(Ⅲ)若4名教師可去、、三個(gè)學(xué)雷鋒文明交通宣傳點(diǎn)進(jìn)行文明交通宣傳,其中每名教師去、、三個(gè)文明交通宣傳點(diǎn)是等可能的,且各位教師的選擇相互獨(dú)立.記到文明交通宣傳點(diǎn)的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線平面,垂足是,正四面體的棱長(zhǎng)為,點(diǎn)在平面上運(yùn)動(dòng),點(diǎn)在直線上運(yùn)動(dòng),則點(diǎn)到直線的距離的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)求證:橢圓中斜率為的平行弦的中點(diǎn)軌跡必過(guò)橢圓中心;

2)用作圖方法找出下面給定橢圓的中心;

3)我們把由半橢圓與半橢圓合成的曲線稱作果圓,其中,,.如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,果圓,軸的交點(diǎn). 連結(jié)果圓上任意兩點(diǎn)的線段稱為果圓的弦.試研究:是否存在實(shí)數(shù),使斜率為果圓平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若對(duì)任意,存在,,則實(shí)數(shù)的取值范圍為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機(jī)抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個(gè)人被抽到的概率都是

其中說(shuō)法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐SABCD中,底面ABCD是直角梯形,ABADABBC,側(cè)面SAB⊥底面ABCD,且SASBABBC2,AD1

1)設(shè)E為棱SB的中點(diǎn),求證:AE⊥平面SBC;

2)求平面SCD與平面SAB所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為,,公差為

,求數(shù)列的通項(xiàng)公式;

是否存在d,n使成立?若存在,試找出所有滿足條件的d,n的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案